Обозначим скорость первого автомобиля за х км/ч Путь - S км Время движения первого автомобиля t=S/x ч Второй автомобиль проехал первую половину пути S/2 со скоростью 60 км/ч, значит его время на этом участке равно t=S/(2*60)=S/120 ч. Вторая половина пути была пройдена эти автомобилем со скоростью (х+18) км/ч. Значит время на этом участке равно t=S/(2*(x+18)) ч. Получаем уравнение: S/x=S/120 + S/(2*(x+18)) Приводим к общему знаменателю и сокращаем на S. Получаем: 2160+120х=х²+18х+60х х²+78х-120х-2160=0 х²-42х-2160=0 D=1764+8640=10404 х₁=(42-102):2=-30 скорость не может быть отрицательна х₂=(42+102):2=144:2=72 км/ч скорость первого автомобиля
5y^2 + 13y - 6 = 6y^2 + 7y + 2
5y^2 - 6y^2 + 13y - 7y - 6 - 2 = 0
- y^2 + 6y - 8 = 0
y^2 - 6y + 8 = 0
D = b^2 - 4ac= 36 - 32 = 4 = 2^2
y1 = ( 6 + 2)/ 2 = 4
y2 = ( 6 - 2) / 2 = 2
Проверяем подходят ли оба корня:
y =4 y = 2
(20 - 2)/(8 +1 )=( 12 + 2)/ 7 (10 - 2)/(4 + 1) = (6 + 2)/5
18/9 = 14/7 8/ 5 = 8/5 - верно.
2 = 2 - верно.
Находим среднее арифметическое корней:
(4 + 2) / 2 = 3
Путь - S км
Время движения первого автомобиля t=S/x ч
Второй автомобиль проехал первую половину пути S/2 со скоростью 60 км/ч, значит его время на этом участке равно t=S/(2*60)=S/120 ч. Вторая половина пути была пройдена эти автомобилем со скоростью (х+18) км/ч. Значит время на этом участке равно t=S/(2*(x+18)) ч.
Получаем уравнение:
S/x=S/120 + S/(2*(x+18))
Приводим к общему знаменателю и сокращаем на S. Получаем:
2160+120х=х²+18х+60х
х²+78х-120х-2160=0
х²-42х-2160=0
D=1764+8640=10404
х₁=(42-102):2=-30 скорость не может быть отрицательна
х₂=(42+102):2=144:2=72 км/ч скорость первого автомобиля