В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
azarkan
azarkan
08.09.2022 11:40 •  Алгебра

Решите неравенство: а3 + в3 ≥ а2в + в2а а≥0 , в≥0

Показать ответ
Ответ:
Hackerapo4ta
Hackerapo4ta
01.10.2020 09:31
Если правильно понял то а3 - это степень а, а а> или =0 и b> или =0 это условие.
По формуле раскрываем а^3 + b^3=(a+b)*(a^2-ab+b^2);
Из 2 выносим ab: a^2*b+b^2*a=ab*(a+b)
Получается: (a+b)*(a^2-ab+b^2)> или =ab*(a+b)
Так как a и b- положительные числа, то  a+b тоже больше или = 0, значит можно разделить обе части без изменения знака, и остается:
a^2-ab+b^2> или =ab
a^2-ab+b^2-ab> или =0
a^2-2ab+b^2> или =0
(a-b)^2> или =0
Так как (a-b) в квадрате, значит несмотря ни на что получится число большее или равное 0.
Все доказано.
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота