Теперь начертить СХЕМУ параболы (ничего вычислять не нужно), которую выражает данное уравнение, ветви направлены вниз, парабола пересекает ось Ох при х= -0,8 и х= 5, отмечаем эти точки схематично, смотрим на график.
По графику ясно видно, что у>= 0 (график выше оси Ох) при х∈[-0,8; 5].
Причём х= -0,8 и х= 5 входят в интервал решений неравенства.
Неравенство нестрогое, скобки квадратные.
Решение неравенства х∈[-0,8; 5].
2) - х² + 2х + 15 > 0;
Приравнять к нулю и решить как квадратное уравнение:
- х² + 2 х + 15 = 0/-1 Уравнение параболы, график которой строить.
х² - 2 х - 15 = 0
D=b²-4ac = 4 + 60 = 64 √D= 8
х₁=(-b-√D)/2a
х₁=(2-8)/2
х₁= -6/2
х₁= -3;
х₂=(-b+√D)/2a
х₂=(2+8)/2
х₂=10/2
х₂=5.
Теперь начертить СХЕМУ параболы (ничего вычислять не нужно), которую выражает данное уравнение, ветви направлены вниз, парабола пересекает ось Ох при х= -3 и х= 5, отмечаем эти точки схематично, смотрим на график.
По графику ясно видно, что у > 0 (график выше оси Ох) при х∈(-3; 5).
1) Сначала определяем, к какой четверти (квадранту) относится данный угол α. В условии сказано, что он лежит в 4-й четверти (∈ - означает "принадлежит"; 3π/2 = 3 · 180 / 2 = 270°, а 2π = 2 · 180 = 360°; ещё обращаем внимание, в каких скобках указан диапазон: здесь обе скобки круглые - это значит, что крайние точки диапазона не входят в диапазон; а если угловые - такая [ или такая ] -, то входят).
2) Так как угол α принадлежит 4-й четверти, то это означает, что синус этого угла отрицательный, а косинус положительный.
3) Косинус можно найти через синус по формуле:
cos α = ± √(1 - sin²α)
Знак ± говорит о том, что полученный ответ надо взять с тем знаком, который мы определили в п.2. Соответственно у нас будет +.
В решении.
Объяснение:
Решить неравенство:
1) (5 - х)(х + 0,8) >= 0
Раскрыть скобки:
5х + 4 - х² - 0,8х >= 0
-х² + 4,2х + 4 >= 0
Приравнять к нулю и решить как квадратное уравнение:
-х² + 4,2х + 4 = 0/-1 Уравнение параболы, график которой строить.
х² - 4,2х - 4 = 0
D=b²-4ac = 17,64 + 16 = 33,64 √D= 5,8
х₁=(-b-√D)/2a
х₁=(4,2-5,8)/2
х₁= -1,6/2
х₁= -0,8;
х₂=(-b+√D)/2a
х₂=(4,2+5,8)/2
х₂=10/2
х₂=5.
Теперь начертить СХЕМУ параболы (ничего вычислять не нужно), которую выражает данное уравнение, ветви направлены вниз, парабола пересекает ось Ох при х= -0,8 и х= 5, отмечаем эти точки схематично, смотрим на график.
По графику ясно видно, что у>= 0 (график выше оси Ох) при х∈[-0,8; 5].
Причём х= -0,8 и х= 5 входят в интервал решений неравенства.
Неравенство нестрогое, скобки квадратные.
Решение неравенства х∈[-0,8; 5].
2) - х² + 2х + 15 > 0;
Приравнять к нулю и решить как квадратное уравнение:
- х² + 2 х + 15 = 0/-1 Уравнение параболы, график которой строить.
х² - 2 х - 15 = 0
D=b²-4ac = 4 + 60 = 64 √D= 8
х₁=(-b-√D)/2a
х₁=(2-8)/2
х₁= -6/2
х₁= -3;
х₂=(-b+√D)/2a
х₂=(2+8)/2
х₂=10/2
х₂=5.
Теперь начертить СХЕМУ параболы (ничего вычислять не нужно), которую выражает данное уравнение, ветви направлены вниз, парабола пересекает ось Ох при х= -3 и х= 5, отмечаем эти точки схематично, смотрим на график.
По графику ясно видно, что у > 0 (график выше оси Ох) при х∈(-3; 5).
Неравенство строгое, скобки круглые.
Решение неравенства х∈(-3; 5).
1 2/3
Объяснение:
1) Сначала определяем, к какой четверти (квадранту) относится данный угол α. В условии сказано, что он лежит в 4-й четверти (∈ - означает "принадлежит"; 3π/2 = 3 · 180 / 2 = 270°, а 2π = 2 · 180 = 360°; ещё обращаем внимание, в каких скобках указан диапазон: здесь обе скобки круглые - это значит, что крайние точки диапазона не входят в диапазон; а если угловые - такая [ или такая ] -, то входят).
2) Так как угол α принадлежит 4-й четверти, то это означает, что синус этого угла отрицательный, а косинус положительный.
3) Косинус можно найти через синус по формуле:
cos α = ± √(1 - sin²α)
Знак ± говорит о том, что полученный ответ надо взять с тем знаком, который мы определили в п.2. Соответственно у нас будет +.
cos α = √(1 - sin²α) = √((1 - (2√2/3)²) = √(1 - 2²·2/3²) = √(1 - 8/9) = √1/9 = 1/3
4) Теперь полученное значение умножаем на 5:
5 · 1/3 = 5 / 3 = 1 2/3