Решите систему уравнений методом подстановки общая скобка один пример сверху другой снизу 3x-y=-5. -5x+2y=1, т. е из одного уравнения выразить одну переменную и подставить во второе. Из двух уравнений проще выразить из первого у, т. к. коэффициент равен 1, получим 3x-y=-5 -5x+2y=1 Выражаем у из первого уравнения и ставим во второе у=3х+5 -5х+2(3х+5)=1 Раскрываем скобки у=3х+5 -5х+6х+10=1 Приводим подобные у=3х+5 х+10=1 Отсюда у=3(-9)+5 х=1-10 Или решением неравенства будет пара у=-22 х=-9 Проверка 3(-9)-(-22)=-5 -5(-9)+2(-22)=1 Произведем вычисления -27+22=-5 45-44=1 или 5=-5 1=1 Т. к. получили верное равенство, значит, решили правильно ответ: х=-9 и у=-22 или (-9;-22) Удачи!
2) x(2-х)>0; 2х-х^2>0; х(2-х)>0; получаем два неравенства: 1)х>0; 2)2-х>0; -х-2; х<2
3) 5х(3+х)(х-9)<0; (15х+5х^2)(х-9)<0; 15х^2+5х^3-135х-45х^2<0; 5х^3-30х^2-135х<0; 5х(х^2-6х-27)<0; получаем два неравенства: 1)5х<0; х<0; 2)х^2-6х-27<0; D=(-6)^2-4*1*(-27)=36+108=144; х1=6+12/2=9; х2=6-12/2=-3
4)0,4х(7-х)(х-0,8)<или=0; (2,8х-0,4х^2)(х-0,8)<или=0; 2,8х^2-2,24х-0,4х^3+0,32х^2<или=0; -0,4х^3+3,12х^2-2,24х<или=0; 0,4х(-х^2+7,8х-5,6)<или=0; получаем два неравенства: 1)0,4х<или=0; х<или=0; 2) -х^2+7,8х-5,6<или=0; D=7,8^2-4*(-1)*(-5,6)=60,84-22,4=38,44; x1=-7,8+6,2/-2=0,8; x2=-7,8-6,2/-2=7
3x-y=-5
-5x+2y=1
Выражаем у из первого уравнения и ставим во второе
у=3х+5
-5х+2(3х+5)=1
Раскрываем скобки
у=3х+5
-5х+6х+10=1
Приводим подобные
у=3х+5
х+10=1
Отсюда
у=3(-9)+5
х=1-10
Или решением неравенства будет пара
у=-22
х=-9
Проверка
3(-9)-(-22)=-5
-5(-9)+2(-22)=1
Произведем вычисления
-27+22=-5
45-44=1
или
5=-5
1=1
Т. к. получили верное равенство, значит, решили правильно
ответ: х=-9 и у=-22 или (-9;-22)
Удачи!