(x + 3)(x - 1)(x - 10) < 0
f(x) = (x + 3)(x - 1)(x -10)
Нули функции: -3; 1; 10
ответ: (-∞; -3) ∪ (1; 10)
(-∞; -3)∪(1; 10)
Объяснение:
Решаем неравенство
(x+3)·(x-1)·(x-10)<0
методом интервалов:
1) Определим нули левой части неравенства, то ест решаем уравнение (x+3)·(x-1)·(x-10)=0:
x+3=0 ⇔ x = -3
x-1=0 ⇔ x = 1
x-10=0 ⇔ x = 10
2) Нули левой части делит ось Ох на следующие промежутки, в которых знак выражения (x+3)(x-1)(x-10) не меняется:
(-∞; -3), (-3; 1), (1; 10), (10; +∞).
3) Определим знаки выражения в каждом промежутке:
а) x∈(-∞; -3): (x+3)·(x-1)·(x-10)<0, например при x= -100:
(-5+3)·(-5-1)·(-5-10)= -180<0;
б) x∈(-3; 1): (x+3)·(x-1)·(x-10)>0, например при x= 0:
(0+3)(0-1)(0-10)=30>0;
в) x∈(1; 10): (x+3)·(x-1)·(x-10)<0, например при x= 2:
(2+3)·(2-1)·(2-10)= -40<0;
г) x∈(10; +∞): (x+3)·(x-1)·(x-10)>0, например при x= 11:
(11+3)·(11-1)·(11-10)= 140>0;
4) Решением неравенства будет множество:
(-∞; -3)∪(1; 10).
(x + 3)(x - 1)(x - 10) < 0
f(x) = (x + 3)(x - 1)(x -10)
Нули функции: -3; 1; 10
ответ: (-∞; -3) ∪ (1; 10)
(-∞; -3)∪(1; 10)
Объяснение:
Решаем неравенство
(x+3)·(x-1)·(x-10)<0
методом интервалов:
1) Определим нули левой части неравенства, то ест решаем уравнение (x+3)·(x-1)·(x-10)=0:
x+3=0 ⇔ x = -3
x-1=0 ⇔ x = 1
x-10=0 ⇔ x = 10
2) Нули левой части делит ось Ох на следующие промежутки, в которых знак выражения (x+3)(x-1)(x-10) не меняется:
(-∞; -3), (-3; 1), (1; 10), (10; +∞).
3) Определим знаки выражения в каждом промежутке:
а) x∈(-∞; -3): (x+3)·(x-1)·(x-10)<0, например при x= -100:
(-5+3)·(-5-1)·(-5-10)= -180<0;
б) x∈(-3; 1): (x+3)·(x-1)·(x-10)>0, например при x= 0:
(0+3)(0-1)(0-10)=30>0;
в) x∈(1; 10): (x+3)·(x-1)·(x-10)<0, например при x= 2:
(2+3)·(2-1)·(2-10)= -40<0;
г) x∈(10; +∞): (x+3)·(x-1)·(x-10)>0, например при x= 11:
(11+3)·(11-1)·(11-10)= 140>0;
4) Решением неравенства будет множество:
(-∞; -3)∪(1; 10).