1)область значений функции: у≥0; 2)х=(-∞;+∞); 3)корни :x²+4x-5=0; x₁,₂=-2⁺₋√4+5=-2⁺₋3; x₁=-2+3=1; x₂=-2-3=-5; 4)если бы не было модуля,то это график параболы, вершина этой имеет координаты: m=-b/2a=-4/2=-2;n=-D/4a=-(4²+4·5)/4=-9; 5)имеется модуль,поэтому строится график параболы,затем,вся часть графика,которая размещена ниже оси Ох ,строится симметрично осиОх. График будет иметь вид: при х=(-∞;-5)-функция убывает; при х=(-5;-2)-функция возрастает; при х=(-2;1)-функция убывает; при х=(1;+∞)-функция возрастает.
Я не стану спецом лезть в инет и чекать где она применяется, я лишь приведу свои примеры, где тригонометрия мне пригодилась, да они будут тупыми, но все же :D
Во-первых, без тригонометрии очень сложно в физике, при решении сложных физических задач на механику, электродинамику очень часто приходится знать тригонометрию, особенно в теме колебательного движения, так как гармонические колебания происходят по закону синуса или косинуса, то есть графиком будет синусоида.
Во-вторых, когда тебе может быть скучно, допустим ты находишься в своей машине на горке под определенным углом к горизонту и тебе нужно найти проекцию силы тяжести, которая тянет твою машину вниз, то без тригонометрии тоже сложно это сделать. Ну это все шутки конечно...
Тригонометрия нужна в разработке 3-D игр, даже не зачем объяснять почему - это итак очевидно, нужно, допустим, определить траекторию полета какого-то тела или проверить столкнутся ли тела, либо тебе необходимо заставить объект двигаться в любом направлении - это все без так называемых "синусов" и "косинусов" не сделать.
Вообщем говоря стоит признать уже всем, что без тригонометрии нам никуда и как ни крути все равно придется ее знать.
2)х=(-∞;+∞);
3)корни :x²+4x-5=0;
x₁,₂=-2⁺₋√4+5=-2⁺₋3;
x₁=-2+3=1; x₂=-2-3=-5;
4)если бы не было модуля,то это график параболы,
вершина этой имеет координаты:
m=-b/2a=-4/2=-2;n=-D/4a=-(4²+4·5)/4=-9;
5)имеется модуль,поэтому строится график параболы,затем,вся часть графика,которая размещена ниже оси Ох ,строится симметрично осиОх.
График будет иметь вид:
при х=(-∞;-5)-функция убывает;
при х=(-5;-2)-функция возрастает;
при х=(-2;1)-функция убывает;
при х=(1;+∞)-функция возрастает.
Я не стану спецом лезть в инет и чекать где она применяется, я лишь приведу свои примеры, где тригонометрия мне пригодилась, да они будут тупыми, но все же :D
Во-первых, без тригонометрии очень сложно в физике, при решении сложных физических задач на механику, электродинамику очень часто приходится знать тригонометрию, особенно в теме колебательного движения, так как гармонические колебания происходят по закону синуса или косинуса, то есть графиком будет синусоида.
Во-вторых, когда тебе может быть скучно, допустим ты находишься в своей машине на горке под определенным углом к горизонту и тебе нужно найти проекцию силы тяжести, которая тянет твою машину вниз, то без тригонометрии тоже сложно это сделать. Ну это все шутки конечно...
Тригонометрия нужна в разработке 3-D игр, даже не зачем объяснять почему - это итак очевидно, нужно, допустим, определить траекторию полета какого-то тела или проверить столкнутся ли тела, либо тебе необходимо заставить объект двигаться в любом направлении - это все без так называемых "синусов" и "косинусов" не сделать.
Вообщем говоря стоит признать уже всем, что без тригонометрии нам никуда и как ни крути все равно придется ее знать.