Из условия известно, что первое уравнение этой системы обращается в верное равенство при x= 8 и y= −7; тогда, подставив эти значения переменных в первое уравнение, можно найти коэффициент a.
Получим:
ax+3y=11;8a+3⋅(−7)=11;8a=11−(−21);8a=32;a=4.
При таком значении коэффициента a данная система примет вид:
{4x+3y=115x+2y=12
Для решения этой системы уравнений графически построим в одной координатной плоскости графики каждого из уравнений.
Графиком уравнения 4x+3y=11 является прямая.
Найдём две пары значений переменных x и y, удовлетворяющих этому уравнению.
x −1 2
y 5 1
Построим на координатной плоскости xОy прямую m, проходящую через эти две точки.
Графиком уравнения 5x+2y=12 также является прямая.
Найдём две пары значений переменных x и y, удовлетворяющих этому уравнению.
x 0 2
y 6 1
Построим на координатной плоскости xОy прямую n, проходящую через эти две точки.
Получим:
Прямые m и n пересекаются в точке A, координаты которой являются решением системы, т. е. A(2;1)
y = f(x)
f'(x) = (x^2 + 10x + 25)' * (2x - 10) + (x^2 + 10x + 25) * (2x - 10)' + 9' =
= (2x + 10 + 0) * (2 - 0) + (x^2 + 10x + 25) * (2 - 0) + 0 =
= 2*(2x+10) + 2(x+5)^2 = 4(x+5) + 2(x+5)^2 = 2(x+5)(2 + x + 5) =
= 2(x+5)(7+x) - производная нашей функции, приравниваем её к нулю:
2(x+5)(7+x) = 0
x+5 = 0 и 7+x = 0
x = -5 x = -7
Отмечаем полученные корни на координантной прямой:
+ - + x
оо>
-7 -5
Точка максимума - это x=-7, так как производная f'(x) возрастает до -7, а потом убывает. Точка x=-5 - точка минимума.
y=(-7+5)^2(-7-5) + 9 = 4*(-12) + 9 = -48 + 9 = -39
Получается, что в точке (-5;-39) эта функция достигает своего максимума.
a=4
(2;1)
Объяснение:
Из условия известно, что первое уравнение этой системы обращается в верное равенство при x= 8 и y= −7; тогда, подставив эти значения переменных в первое уравнение, можно найти коэффициент a.
Получим:
ax+3y=11;8a+3⋅(−7)=11;8a=11−(−21);8a=32;a=4.
При таком значении коэффициента a данная система примет вид:
{4x+3y=115x+2y=12
Для решения этой системы уравнений графически построим в одной координатной плоскости графики каждого из уравнений.
Графиком уравнения 4x+3y=11 является прямая.
Найдём две пары значений переменных x и y, удовлетворяющих этому уравнению.
x −1 2
y 5 1
Построим на координатной плоскости xОy прямую m, проходящую через эти две точки.
Графиком уравнения 5x+2y=12 также является прямая.
Найдём две пары значений переменных x и y, удовлетворяющих этому уравнению.
x 0 2
y 6 1
Построим на координатной плоскости xОy прямую n, проходящую через эти две точки.
Получим:
Прямые m и n пересекаются в точке A, координаты которой являются решением системы, т. е. A(2;1)
Объяснение: