(x+2)(x-1)(3x-7)≤0 Решаем неравенство методом интервалов. Находим нули функции у=(x+2)(x-1)(3x-7) (x+2)(x-1)(3x-7)=0 Произведение нескольких множителей равно нулю, когда хотя бы один из них равен нулю. х+2 = 0 или х - 1 = 0 или 3х - 7 = 0 х=-2 или х=1 или х=2 целых 1/3 Отмечаем точки на числовой прямой заполненным кружком (здесь это квадратные скобки) и расставляем знаки : - + - + при х = -10 получаем (-10+2)(-10-1)(-30-7) <0 _ + _ + [-2][1][2целых1/3] поэтому на интервале, содержащем точку (-10),знак минус, далее знаки чередуем. ответ: (−∞;−2]∪[1; 2 целых 1/3]
Решаем неравенство методом интервалов.
Находим нули функции у=(x+2)(x-1)(3x-7)
(x+2)(x-1)(3x-7)=0
Произведение нескольких множителей равно нулю, когда хотя бы один из них равен нулю.
х+2 = 0 или х - 1 = 0 или 3х - 7 = 0
х=-2 или х=1 или х=2 целых 1/3
Отмечаем точки на числовой прямой заполненным кружком (здесь это квадратные скобки) и расставляем знаки : - + - +
при х = -10 получаем (-10+2)(-10-1)(-30-7) <0
_ + _ +
[-2][1][2целых1/3]
поэтому на интервале, содержащем точку (-10),знак минус, далее знаки чередуем.
ответ: (−∞;−2]∪[1; 2 целых 1/3]
Каждое к нулю
х1=-2, х2=1, х3=2 целых 1/3
Знаки на интервале: - + - +
ответ: (−∞;−2]∪[1; 2 целых 1/3]