Для нахождения решения корней x2 - 6x = 16 полного квадратного уравнения мы начнем с того, что перенесем 16 в левую часть уравнения:
x2 - 6x - 16 = 0.
Для решения уравнения будем использовать формулы для поиска дискриминанта и корней уравнения через дискриминант.
D = b2 - 4ac = (-6)2 - 4 * 1 * (-16) = 36 + 64 = 100;
Корни уравнения мы вычислим по следующим формулам:
x1 = (-b + √D)/2a = (6 + √100)/2 * 1 = (6 + 10)/2 = 16/2 = 8;
x2 = (-b - √D)/2a = (6 - √100)/2 * 1 = (6 - 10)/2 = -4/2 = -2.
ответ: x = 8; x = -2.
Объяснение:
!x+2! - !x-3! + !2x+6! =4
Очередной раз напомню. Модуль это всегда положительное число, расстояние от числа до начала координат. и раскрываются они если положительное число, то такое же число, если отрицательное то с минусом
Раскрываем модули
!2x+6! !x+2! !x-3!
x<-3 -(2x+6) -(x+2) -(x-3) 1
-3<x<-2 2x+6 -(x+2) -(x-3) 2
-2<x<3 2x+6 x+2 -(x-3) 3
x>3 2x+6 x+2 (x+3) 4
!x+2! - !x-3! + !2x+6! =4
1. -(x+2) - (-(x-3)) + (-(2x+6)) =4
-x-2+x-3-2x-6=4
-2x=15
x=-15/2 x<-3 подходит
2. -(x+2) - (-(x-3)) + (2x+6) =4
-x-2+x-3+2x+6=4
2x=3
x=3/2 -3<x<-2 нет решений
3. (x+2) - (-(x-3)) + (2x+6) =4
x+2 +x-3 + 2x+6=4
4x=-1
x=-1/4 -2<x<3 подходит
4. (x+2) - (x-3) + (2x+6) =4
x+2-x+3+2x+6=4
2x=-7
x=-7/2 x>3 нет корней
Для нахождения решения корней x2 - 6x = 16 полного квадратного уравнения мы начнем с того, что перенесем 16 в левую часть уравнения:
x2 - 6x - 16 = 0.
Для решения уравнения будем использовать формулы для поиска дискриминанта и корней уравнения через дискриминант.
D = b2 - 4ac = (-6)2 - 4 * 1 * (-16) = 36 + 64 = 100;
Корни уравнения мы вычислим по следующим формулам:
x1 = (-b + √D)/2a = (6 + √100)/2 * 1 = (6 + 10)/2 = 16/2 = 8;
x2 = (-b - √D)/2a = (6 - √100)/2 * 1 = (6 - 10)/2 = -4/2 = -2.
ответ: x = 8; x = -2.
Объяснение: