Обозначим скорость течения за x км/ч.Тогда скорость лодки по течению (5+x)км/ч, а против течения - (5-x) км/ч. Переведем 3 ч 40 мин в часы: 3+40/60=180/60+40/60=220/60=11/3 ч. Расстояние,которое лодка по течению: S1=(5+x)*3. Расстояние против течения: S2=(5-x)*(11/3). Так как по условию S1=S2, получаем уравнение: (5+x)*3=(5-x)*(11/3). // Умножим обе части на 3,чтобы упростить(5+x)*9=(5-x)*11 //Раскроем скобки45+9x=55-11x //Переносим с x в левую часть,без x - в правую.9x+11x=55-45 20x=10x=0,5.Итак, скоротсть течения 0,5 км/ч.
Выражаем из первого уравнения у, получается: у = 3х - 1
Подставляем полученное значение у во второе уравнение: х*(3х - 1) = 10, решаем его, раскрывая скобки: 3х² - х - 10 = 0
находим дискриминант: D = b² - 4ac,
D = (-1)² - 4 * 3 * (-10) = 1 + 120 = 121
х₁ =
х₂ =
Подставляем в первое уравнение найденные значения х:
если х₁ = 2, то у₁ = 3 * 2 - 1
у₁ = 5
если х₂ = -5/3, то у₂ = 3 * (-5/3) - 1
у₂ = -5 - 1
у₂ = -6
Проверка:
подставляем значения х₁ и у₁:
- верно,
подставляем значения х₂ и у₂:
- верно
ответ: (2;5) и (-5/3;-6)