Графически неравенство x^2+6x-18<0 представляет собой ту часть параболы у = x^2+6x-18, которая расположена ниже оси ординат(это ось ОХ).Поэтому находим точки пересечения этой параболы с осью ОХ - в этих точках значение у = 0: х² + 6х - 18 = 0 Квадратное уравнение, решаем относительно x: Ищем дискриминант:D=6^2-4*1*(-18)=36-4*(-18)=36-(-4*18)=36-(-72)=36+72=108; Дискриминант больше 0, уравнение имеет 2 корня: x_1=(√108-6)/(2*1)=√108/2-6/2=(√108/2)-3 ≈ 2.19615; x_2=(-√108-6)/(2*1)=-√108/2-6/2=(-√108/2)-3 ≈ -8.19615. Отсюда ответ:
х² + 6х - 18 = 0
Квадратное уравнение, решаем относительно x:
Ищем дискриминант:D=6^2-4*1*(-18)=36-4*(-18)=36-(-4*18)=36-(-72)=36+72=108;
Дискриминант больше 0, уравнение имеет 2 корня:
x_1=(√108-6)/(2*1)=√108/2-6/2=(√108/2)-3 ≈ 2.19615;
x_2=(-√108-6)/(2*1)=-√108/2-6/2=(-√108/2)-3 ≈ -8.19615.
Отсюда ответ:
Остальные задачи решаются аналогично.