Построить график линейной функции y=2x+3 и выделить его часть, соответствующую заданному промежутку оси x: (-бесконечность,1]
В задании определена Область определения функции (-бесконечность,1].
Уравнение линейное, значит графиком его является прямая линия.
Чтобы построить график достаточно найти на координатной плоскости две точки и через них провести прямую.
1. точка будет (0,3), а вторая (-1,1)
2. Проведем прямую (оранжевым цветом)
3. Стереть лишнюю часть этой прямой, то есть убрать те значения функции, которые не принадлежат Области Определения, т.е. всю часть прямой которая правее Вертикальной линии, проходящей через х=1 (голубым цветом нарисована)
Объяснени1) y=5x-3
y=3x+1
Координаты пересечения:
5х-3=3х+1
5х-3х=1+3
2х=4
х=2
у=5*2-3=7
у=3*2+1=7
(2;7)
Для построения одна точка известна для обоих графиков, осталось найти еще по одной точке для каждого графика:
у=5х-3 первая точка (2;7)
х=0
у=5*0-3=-3
вторая точка (0;-3)
у=3х+1 первая точка (2;7)
х=0
у=3*0+1=1
вторая точка (0;1)
2) -4х+3=(1/2)х+3
(-4 1/2)х=0
х=0
у=-4*0+3=3
у=(1/2)*0+3=3
координата пересечения (0;3)
Построение:
х=-1
у=-4*(-1)+3=7
(0;3)(-1;7) для у=-4х+3
х=2
у=1/2*2+3=4
(0;3)(2;4) для у=(1/2)х+3
Графики в файле.
е:
В задании определена Область определения функции (-бесконечность,1].
Уравнение линейное, значит графиком его является прямая линия.
Чтобы построить график достаточно найти на координатной плоскости две точки и через них провести прямую.
1. точка будет (0,3), а вторая (-1,1)
2. Проведем прямую (оранжевым цветом)
3. Стереть лишнюю часть этой прямой, то есть убрать те значения функции, которые не принадлежат Области Определения, т.е. всю часть прямой которая правее Вертикальной линии, проходящей через х=1 (голубым цветом нарисована)