В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
Алекс2241
Алекс2241
08.07.2022 18:54 •  Алгебра

Решите ! нужно! ! докажите, что функция y=1/7*x^7 + sin3x является первообразной для функции y=x^6+3cos3x

Показать ответ
Ответ:
ArsenhikBRO
ArsenhikBRO
27.05.2020 16:45

y=\frac{1}{7}x^7+sin (3x);\\ y'=(\frac{1}{7}x^7+sin (3x))'=(\frac{1}{7}x^7)'+(sin (3x))'=\\ \frac{1}{7}(x^7)'+cos (3x) *(3x)'=\frac{1}{7}*7x^{7-1}+cos (3x)*3=x^6+3cos 3x;\\ (\frac{1}{7}x^7+sin (3x))'=x^6+3cos 3x

значит функция y=1/7*x^7 + sin3x является первообразной для функции y=x^6+3cos3x

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота