2)Чтобы разделить две дроби, надо первое число умножить на число, обратное ко второму (то есть первую дробь умножаем на перевернутую вторую).Примеры деления обыкновенных дробей: 3)Сложение смешанных чисел:Чтобы сложить смешанные числа нужно: отдельно сложить их целые части; Пример. Складываем целые части: 3 + 4 = 7отдельно складываем дробные части; Если у дробных частей знаменатели разные, то сначала приводим их к общему знаменателю, а затем складываем.
Складываем полученные результаты из пунктов 1 и 2: Если при сложении дробных частей получилась неправильная дробь, то нужно выделить целую часть из этой дроби и прибавить к полученной в пункте 1 целой части.
Ещё один пример на сложение дробей: Вычитание смешанных чисел: Чтобы выполнить вычитание смешанных чисел, надо: привести дробные части этих чисел к наименьшему общему знаменателю; если дробная часть уменьшаемого меньше дробной части вычитаемого, превратить ее в неправильную дробь, уменьшив на единицу, целую часть: 2 16 – 1 89 = 2 318 – 1 1618 = 1 2118 – 1 1618 ; отдельно выполнить вычитание целых частей и отдельно дробных частей: 2 16 – 1 89 = 2 318 – 1 1618 = 1 2118 – 1 1618 =
= 1 – 1 + 2118 – 1618 = 518 . Умножение обыкновенной дроби на натуральное число: При умножении дроби на натуральное число, мы должны ее числитель умножить на это число, а знаменатель оставить без изменения.
Чтобы умножить смешанную дробь на натуральное число, мы должны умножить и целую часть и числитель дроби на это число.
Как дробь разделить на число:Чтобы разделить дробь на натуральное число, надо знаменатель дроби умножить на число, а числитель оставить тем же:3 : 2 = 3 = 377 · 214
an=3n-8меньше 0
3n-8меньше 0
nменьше 8/3
nменьше2 целых 2/3 следовательно
n=2
а2=3 х 2 - 8
а2 = -2 2
.найдите двенадцатый член дано а1=26; а2=23 следовательно d=-3(23-26)
а12= a1+(n-1) d
a12=26+11d
a12=26-33
a12=-7
3. какое число является членом арифметической пр.
a1=4 a4=85
d=(an-am)\n-m=(a4-a1)\4-1=(85-4)\3=27
a2=4+27=31
a3=31+27=58
4.вычислите an=15 -3n
здесь а1=15
по формуле s=(a1+an)\2 х n=(15+15-3 х19)\2 и всё умножить на 19= решаем и находим s19=256,5
как то так
3)Сложение смешанных чисел:Чтобы сложить смешанные числа нужно:
отдельно сложить их целые части;
Пример. Складываем целые части: 3 + 4 = 7отдельно складываем дробные части;
Если у дробных частей знаменатели разные, то сначала приводим их к общему знаменателю, а затем складываем.
Складываем полученные результаты из пунктов 1 и 2:
Если при сложении дробных частей получилась неправильная дробь, то нужно выделить целую часть из этой дроби и прибавить к полученной в пункте 1 целой части.
Ещё один пример на сложение дробей:
Вычитание смешанных чисел: Чтобы выполнить вычитание смешанных чисел, надо:
привести дробные части этих чисел к наименьшему общему знаменателю; если дробная часть уменьшаемого меньше дробной части вычитаемого, превратить ее в неправильную дробь, уменьшив на единицу, целую часть: 2 16 – 1 89 = 2 318 – 1 1618 = 1 2118 – 1 1618 ;
отдельно выполнить вычитание целых частей и отдельно дробных частей: 2 16 – 1 89 = 2 318 – 1 1618 = 1 2118 – 1 1618 =
= 1 – 1 + 2118 – 1618 = 518 . Умножение обыкновенной дроби на натуральное число: При умножении дроби на натуральное число, мы должны ее числитель умножить на это число, а знаменатель оставить без изменения.
Чтобы умножить смешанную дробь на натуральное число, мы должны умножить и целую часть и числитель дроби на это число.
Как дробь разделить на число:Чтобы разделить дробь на натуральное число, надо знаменатель дроби умножить на число, а числитель оставить тем же:3 : 2 = 3 = 377 · 214