В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
дядяррррр
дядяррррр
03.10.2022 00:58 •  Алгебра

Решите нужно как можно скорее решить завтра сдача нужно решить с 4-го по 9-тый

Показать ответ
Ответ:
edinorogserezha1
edinorogserezha1
15.08.2020 18:01

* * * * * * * * * * * * * * * * * * * * *

При каком значении параметра a уравнение имеет ровно 2 различных решения:  (x + 4/x)² + (a - 4)(x + 4/x)  - 2a²+a +3 =0

ответ:   a ∈ ( - 5 ; - 0,5 )  ∪  (3 ; 3,5 ).

Объяснение:  Частный случай (для двух неотрицательных чисел) неравенства Коши: (a+b)/2 ≥ √ab . || сред. арифм. ≥ ср. геом. ||

Поэтому: x + 4/x  ≥  4 ,если x >0   или  x + 4/x  ≤ - 4 ,если x < 0 .

* * * если x < 0:  ( (-x) + ( -4/x) ) ≥ √( ( -x)*(-4/x) ) = 2 ⇔ x + 4/x  ≤ - 4 * * *

* * *  x + 4/x  ∉  ( - 4 ; 4 ) * * *

(x + 4/x)² - (4 -a)(x + 4/x) - 2a²+a +3 =0  

  Это уравнение  квадратное  относительно x + 4/x ;  после замена           ( для удобства )  x + 4/x = t  ,    t  ∉  ( - 4 ; 4 )   получаем :  

t² - (4 - a)t -2a²+a +3 =0 ,  

D =(4-a)²-4(-2a²+a +3)=16 -8a +a²+8a²-4a -12 =9a²-12a+4 =(3a -2)² ≥ 0

t₁= (4-a+3a -2)/2 =a+1

t₂ =(4-a -3a +2)/2 =3 -2a.

Если  D = 3a -2 = 0 ⇔  a = 2/3 ⇒ t₁ =t₂ = 5/3  ∈ ( - 4; 4 ) → исходное  

уравнение не имеет корней .  

Исходное  уравнение будет имеет ровно 2 различных решения

Система неравенств ( пишу в одной строке, разделены запятой )

а)   { a+1 > 4  ; - 4 < 3 -2a < 4 .

⇔ { a > 3 ; - 4 < 2a -3 < 4.⇔ {a > 3 ; - 0,5 < a < 3,5. ⇔

⇒  a ∈ (3 ; 3,5 ).

(3)                          

( - 0,5)(3,5)

б)  { 3 -2a >  4  ; - 4 < a+1 < 4   .

⇔{ 2a - 3 < - 4 ;  -4 - 1 < a  <  4 -1 .⇔ { a< -0,5 ;  -5 < a < 3.

⇒ a ∈ ( -5 ; -0,5 ).

( - 0.5)

( -5)(3)                          

* * * * * * * * * * * * * * * * * * * * *

в) { a+1  < - 4  ; - 4 < 3 -2a <  4 .  

⇔ { a+1  < - 4  ; - 4 < 2a -3 <  4 . ⇔ {  a+1 < - 4 ; 1 < 2a+2< 9. ⇒a  ∉∅.  

{  a+1 < - 4 ; 0,5 < a+1 < 4,5 . ⇒  a  ∉∅.

г) {  3 -2a < - 4  ; - 4 < a+1  <  4 .

⇔{ 2a-3 > 4  ; -4 -1 < a < 4 -1 .⇔{ a> 3,5 ; -5 < a < 3 .  ⇒a  ∉∅

0,0(0 оценок)
Ответ:
Maria123456789101
Maria123456789101
27.01.2021 03:52

1.  ОТВЕТ: например, F(x)=\frac{x^6}{6}+x^2-4x, поскольку F'(x) = f(x).

Общий вид первообразных - F(x)=\frac{x^6}{6}+x^2-4x+C, C=const

2. Докажем, что F'(x)=f(x):

F'(x)=(2\sin x+3x)'=2(\sin x)'+3x'=2\cos x+3=f(x).

Что и требовалось доказать.

3. Общий вид первообразных функции y=x - Y=\frac{x^2}{2}+C, где C - некоторое постоянное число. Если график первообразной проходит через точку P(2;5), то это значит, что при подстановке x=2, y=5 получим верное равенство:

5=\frac{2^2}{2}+C;\\\\5=2+C\Rightarrow C=3.

Искомая первообразная - Y=\frac{x^2}{2}+3.

ОТВЕТ: Y = x²/2 + 3.

4. Графики функции - во вложении 1. Площадь заданной фигуры заштрихована красным.

Поскольку график функции y = 4x - x² на отрезке [0; 2] располагается как минимум не ниже графика функции y = x² (выполняется неравенство 4x - x² ≥  x²), то площадь будет иметь вид

S=\int\limits^2_0 {(4x-x^2-x^2)} \, dx =\int\limits^2_0 {(4x-2x^2)} \, dx =(2x^2-\frac{2x^3}{3})|^2_0=(2\cdot2^2-\frac{2\cdot2^3}{3})-(2\cdot0^2-\frac{2\cdot0^3}{3})=8-\frac{16}{3}=8-5\frac{1}{3}=2\frac{2}{3}.

ОТВЕТ: 2\frac{2}{3}  кв. ед.

5. Графики - во вложении 2. Площадь заданной фигуры заштрихована красным.

Поскольку на отрезке (-2; 2) график функции y = x² - 1 располагается выше графика функции y = x² - 4 (выполняется равенство  x² - 1 >  x² - 4), то площадь будет иметь вид

S=|\int\limits^2_{-2} {[x^2-1-(x^2-4)]} \, dx |=\int\limits^2_{-2} {3} \, dx= (3x)|_{-2}^2=3\cdot2-[3\cdot(-2)]=6+6=12

ОТВЕТ: 12 кв. ед.

6. Объем выполненной работы A(t) с момента t_1по момент t_2согласно механическому смыслу определенного интеграла есть значение выражения интеграла

\int\limits^{t_2}_{t_1} {f(t)} \, dt

Имеем:

A(t)=\int\limits^5_0 {(-2,53t^2+24,75t+111,1)} \, dt=(\frac{-2,53t^3}{3}+\frac{24,75t^2}{2}+111,1t)|_0^5=-\frac{253\cdot5^3}{300}+\frac{2475\cdot5^2}{200}+111,1\cdot5\approx760

ОТВЕТ: ≈ 760.


Интеграл и его применение 1.Найти первообразную для функции f(x)=x5 +2x-4 2. Доказать, что функция
Интеграл и его применение 1.Найти первообразную для функции f(x)=x5 +2x-4 2. Доказать, что функция
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота