В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
rfhbyf23690
rfhbyf23690
29.04.2022 12:57 •  Алгебра

Решите очень
2sin2x+sin^3x=0

Показать ответ
Ответ:
Sashacat555
Sashacat555
15.10.2020 13:41

2sin2x+sin^3x=0\\2*2sinxcosx+sin^3x=0\\sinx(4cosx+sin^2x)=0\\sinx(4cosx+1-cos^2x)=0

sinx=0: x=\pi n, n\in{Z}

или

4cosx+1-cos^2x=0\\cos^2x-4cosx-1=0\\D=16+4=20\\cosx=\frac{4\pm\sqrt{20} }{2}\\ cosx=\frac{4\pm2\sqrt{5} }{2}\\cosx=2\pm\sqrt{5}

cosx=2+\sqrt{5} - решений не имеет, так как |cosx|\leq 1, а 2+\sqrt{5}1

cosx=2-\sqrt{5}: x=\pm{arccos(2-\sqrt{5} )}+2\pi n, n\in{Z}

ответ: \pi n;\pm{arccos(2-\sqrt{5} )}+2\pi n; n\in{Z}

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота