В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
daniilbesperst
daniilbesperst
20.04.2023 15:16 •  Алгебра

Решите Очень день делать;))

Показать ответ
Ответ:
12345678901456619353
12345678901456619353
26.02.2020 13:22
Интересная задачка.

Для того, чтобы начать решать эту задачу, нам необходимо найти такую последовательность, которая приносила бы нам всегда удачу! Из условия ясно, что начинающий должен ходить первый. Можно предложить такой вариант ходов: 
Начинающий должен взять один карандаш. Остается 17 штук. Какое бы количество карандашей ни взял противник, обязательно нужно оставить 13 карандашей на столе. По такому же раскладу, надо оставить 9 карандашей, а затем 5. Какое бы количество карандашей не взял соперник, начинающий всегда сможет оставить ему 1 карандаш.
0,0(0 оценок)
Ответ:
Aкося
Aкося
11.09.2020 00:56

\sin^3x-\cos^3x+\sin x-\cos x=0

Воспользуемся формулой разности кубов:

(\sin x-\cos x)(\sin^2x+\sin x\cos x+\cos^2x)+\sin x-\cos x=0

Выносим за скобки общий множитель:

(\sin x-\cos x)(\sin^2x+\sin x\cos x+\cos^2x+1)=0

Уравнение распадается на два. Решаем первое:

\sin x-\cos x=0

Почленно разделим на \cos x\neq 0:

\mathrm{tg}\, x-1=0

\mathrm{tg}\, x=1

\boxed{x=\dfrac{\pi }{4} +\pi n,\ n\in\mathbb{Z}}

Решаем второе уравнение:

\sin^2x+\sin x\cos x+\cos^2x+1=0

Заметим в левой части основное тригонометрическое тождество:

\sin x\cos x+(\sin^2x+\cos^2x)+1=0

\sin x\cos x+1+1=0

\sin x\cos x+2=0

\sin x\cos x=-2

Обе части уравнения домножим на 2:

2\sin x\cos x=-4

Чтобы в левой части применить формулу синуса двойного угла:

\sin 2x=-4

Но так как синус любого угла принимает значения только из отрезка от -1 до 1, то последнее уравнение не имеет решение.

Значит, никаких других корней, кроме найденных ранее, исходное уравнение не имеет.

ответ: \dfrac{\pi }{4} +\pi n,\ n\in\mathbb{Z}

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота