Войти
Регистрация
Спроси ai-bota
В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Показать больше
Показать меньше
NastyaAnaNastya
09.08.2022 07:57 •
Алгебра
Решите , очень надоо у меня будет
Показать ответ
Ответ:
ismailovu5
26.07.2021 12:21
Найти неопределенные интегралы. Результаты проверить
дифференцированием.
а) ∫(3x^2+4/x+cosx+1)dx=x³+4·ln IxI+sinx +x +C
проверка:
(x³+4·ln IxI+sinx +x +C)'=3x²+4/x +cosx+1 - верно
б) ∫[4x/√(x^2+4)]dx= [ (x^2+4)=t dt=2xdx ] =∫2dt/√t=4√t+c=4√(x^2+4)+c
проверка:
(4√(x^2+4)+c)'=[4(1/2)/√(x^2+4)]·2·x =4x/√(x^2+4) - верно
в) ∫-2xe^xdx =-2 ∫xe^xdx= [ x=u e^xdx=dv ]
[ dx=du e^x=v ]
-2 ∫xe^xdx=-2( u·v- ∫vdu)=-2(x·e^x-∫e^x·dx)=-2(x· e^x-e^x)+c=-2·(e^x)·(x-1)+c
проверка:
(-2·(e^x)·(x-1)+c)'=-2((e^x)'·(x-1)+(e^x)·(x-1)')=-2((e^x)·(x-1)+(e^x))=-2(e^x)·x
=-2x·(e^x) - верно
0,0
(0 оценок)
Ответ:
LilGirl1
26.07.2021 12:21
Найти неопределенные интегралы. Результаты проверить
дифференцированием.
а) ∫(3x^2+4/x+cosx+1)dx=x³+4·ln IxI+sinx +x +C
проверка:
(x³+4·ln IxI+sinx +x +C)'=3x²+4/x +cosx+1 - верно
б) ∫[4x/√(x^2+4)]dx= [ (x^2+4)=t dt=2xdx ] =∫2dt/√t=4√t+c=4√(x^2+4)+c
проверка:
(4√(x^2+4)+c)'=[4(1/2)/√(x^2+4)]·2·x =4x/√(x^2+4) - верно
в) ∫-2xe^xdx =-2 ∫xe^xdx= [ x=u e^xdx=dv ]
[ dx=du e^x=v ]
-2 ∫xe^xdx=-2( u·v- ∫vdu)=-2(x·e^x-∫e^x·dx)=-2(x· e^x-e^x)+c=-2·(e^x)·(x-1)+c
проверка:
(-2·(e^x)·(x-1)+c)'=-2((e^x)'·(x-1)+(e^x)·(x-1)')=-2((e^x)·(x-1)+(e^x))=-2(e^x)·x
=-2x·(e^x) - верно
0,0
(0 оценок)
Популярные вопросы: Алгебра
Denis12o9
09.06.2023 21:14
Вычисли сумму первых 9 членов арифметической прогрессии (an), если даны первые члены: −3;2... S9 = очень нужно...
ttttt1509999
19.02.2023 21:11
Вырази из формулы x2=12(y+z) переменную z. Найди значение z, если x=34, y=7,79. (Для записи ответа используй английскую раскладку без пробелов.) Формула: − . (Запиши ответ...
llerochka1
14.03.2020 03:36
(a+7)²(3x-4y)²(m-6)(m+6)(5a+8b)(8b-5a)...
Golden12345
24.01.2023 00:24
Найдите производную функцииf(x)=(-8x^2+1)^4 ...
aleks1yus
21.12.2022 13:05
Найдите значение выражения: (x-4)^4-(x-2)(x+2)(x+2) при x = 0,125...
Алиса20090327
25.01.2022 03:27
Разложите на множители: 1. c^2-0,25 2. x^2-8x+16...
сармановафакизат
25.01.2022 03:27
Может ли принимать положительные значения выражение: -x2 +20-100...
ALEXFORBIDDEN
30.12.2022 08:26
Lim n-- ∝ sin2n/n lim n-- ∝ cos2n/n найдите предмет последовательности:...
Котеика1космос
20.10.2022 15:12
Представьте в виде многочлена выражение (x-6)(x²+6x+36). решение АЛГЕБРА 7КЛАСС...
klimsamgim923dushez
03.10.2021 00:43
Задания 1. Дана функция: y=x-8х+9 а) определите направление ветвей пар b) вычислите координаты вершины п с) запишите ось симметрии параболь d) найдите нули функции; е) найдите...
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota
Оформи подписку
О НАС
О нас
Блог
Карьера
Условия пользования
Авторское право
Политика конфиденциальности
Политика использования файлов cookie
Предпочтения cookie-файлов
СООБЩЕСТВО
Сообщество
Для школ
Родителям
Кодекс чести
Правила сообщества
Insights
Стань помощником
ПОМОЩЬ
Зарегистрируйся
Центр помощи
Центр безопасности
Договор о конфиденциальности полученной информации
App
Начни делиться знаниями
Вход
Регистрация
Что ты хочешь узнать?
Спроси ai-бота
дифференцированием.
а) ∫(3x^2+4/x+cosx+1)dx=x³+4·ln IxI+sinx +x +C
проверка:
(x³+4·ln IxI+sinx +x +C)'=3x²+4/x +cosx+1 - верно
б) ∫[4x/√(x^2+4)]dx= [ (x^2+4)=t dt=2xdx ] =∫2dt/√t=4√t+c=4√(x^2+4)+c
проверка:
(4√(x^2+4)+c)'=[4(1/2)/√(x^2+4)]·2·x =4x/√(x^2+4) - верно
в) ∫-2xe^xdx =-2 ∫xe^xdx= [ x=u e^xdx=dv ]
[ dx=du e^x=v ]
-2 ∫xe^xdx=-2( u·v- ∫vdu)=-2(x·e^x-∫e^x·dx)=-2(x· e^x-e^x)+c=-2·(e^x)·(x-1)+c
проверка:
(-2·(e^x)·(x-1)+c)'=-2((e^x)'·(x-1)+(e^x)·(x-1)')=-2((e^x)·(x-1)+(e^x))=-2(e^x)·x
=-2x·(e^x) - верно
дифференцированием.
а) ∫(3x^2+4/x+cosx+1)dx=x³+4·ln IxI+sinx +x +C
проверка:
(x³+4·ln IxI+sinx +x +C)'=3x²+4/x +cosx+1 - верно
б) ∫[4x/√(x^2+4)]dx= [ (x^2+4)=t dt=2xdx ] =∫2dt/√t=4√t+c=4√(x^2+4)+c
проверка:
(4√(x^2+4)+c)'=[4(1/2)/√(x^2+4)]·2·x =4x/√(x^2+4) - верно
в) ∫-2xe^xdx =-2 ∫xe^xdx= [ x=u e^xdx=dv ]
[ dx=du e^x=v ]
-2 ∫xe^xdx=-2( u·v- ∫vdu)=-2(x·e^x-∫e^x·dx)=-2(x· e^x-e^x)+c=-2·(e^x)·(x-1)+c
проверка:
(-2·(e^x)·(x-1)+c)'=-2((e^x)'·(x-1)+(e^x)·(x-1)')=-2((e^x)·(x-1)+(e^x))=-2(e^x)·x
=-2x·(e^x) - верно