Сумма второго и четвертого члена арифметической прогрессии равна 14, а седьмой её член на 12 больше третьего.Найдите разность и первый член данной прогрессии кто может.
Решение
а2+а4=14
а7=а3+12
тогда
по характеристическому свойству арифметической прогрессии:
y=2x^2+4y=2x
2
+4 .
Уравнение параболы ищем в виде y=ax^2+bx+cy=ax
2
+bx+c .
Точка А(0,4) принадлежит параболе, значит её координаты удовлетворяют уравнению параболы . Подставим их в уравнение.
4=a\cdot 0^2+b\cdot 0+c\; \; \Rightarrow \; \; c=44=a⋅0
2
+b⋅0+c⇒c=4
Абсцисса вершины параболы по условию равна 0 и вычисляется по формуле:
x_{v}=-\frac{b}{2a}\; \; \Rightarrow \; \; \frac{-b}{2a}=0\; ,\; \; b=0x
v
=−
2a
b
⇒
2a
−b
=0,b=0
Уравнение принимает вид: y=ax^2+4y=ax
2
+4 .
Теперь подставим координаты точки В(-1,6) в уравнение параболы.
6=a\cdot (-1)^2+4\; \; \Rightarrow \; \; 6=a+4\; \; ,\; \; a=26=a⋅(−1)
2
+4⇒6=a+4,a=2
Итак, искомое уравнение имеет вид: y=2x^2+
решила, что проще некуда уже)
Сумма второго и четвертого члена арифметической прогрессии равна 14, а седьмой её член на 12 больше третьего.Найдите разность и первый член данной прогрессии кто может.
Решение
а2+а4=14
а7=а3+12
тогда
по характеристическому свойству арифметической прогрессии:
a(n)=(a(n-1)+a(n+1))/2
а3=(а2+а4)/2=14/2=7
а7=7+12=19
a(n)=a1+d*(n-1)
a(3)=a1+2*d=7
a(7)=a1+6*d=19
тогда
a1=7-2*d
и подставим
(7-2*d)+6*d=19
4*d=12
d=3
a1=7-2*3=1
Проверим
1_4_7_10_13_16_19 - такая прогрессия
сумма 2-го и 4-го = 4+10=14 - истина
19-7=12 - истина
первый член прогрессии (а1)=1
разность арифметической прогрессии (d)=3