В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
sladkaezhka19
sladkaezhka19
17.01.2021 10:28 •  Алгебра

Решите показательное неравенство (с полным решением) 2^x*5^(1/x)> 10

Показать ответ
Ответ:
adidas2963
adidas2963
05.10.2020 08:50
2^x*5^(1/x)=10
{2^x=2⇒x=1
5^(1/x)=5⇒1/x=1⇒x=1
ответ х=1
0,0(0 оценок)
Ответ:
Marcelyn
Marcelyn
05.10.2020 08:50
Прологарифмируем неравенство по основанию 2; смысл неравенства при этом сохранится (поскольку 2>1⇒  логарифмическая функция возрастает, поэтому большему значению функции соответствует большее значение аргумента). Воспользуемся сразу свойствами логарифмов: логарифм произведения равен сумме логарифмов,
при логарифмировании степени показатель выносится перед знаком логарифма (конечно, так можно делать, если все выражения имеют смысл):

x+(1/x)log_2 5>log_2(2·5);
(x^2-(1+log_2 5)x+log_2 5)/x>0;
(x-1)(x-log_2 5)/x>0;
применяя метод интервалов, получаем ответ:
x∈(0;1)∪(log_2 5; +∞)

(суть метода интервалов: наносим на числовой прямой нули числителя и знаменателя и выбираем нужные промежутки, например, как чаще всего заставляют делать в школе, подставляя в неравенство по одному числу из каждого промежетка (но надо сказать, что это самый дебильный из возможных
0,0(0 оценок)
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота