В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
Примари
Примари
23.01.2023 03:50 •  Алгебра

Решите показательное уравнение 0,125*4^2x-3=(0.25/корень из 3)^-x

Показать ответ
Ответ:
Tiger333
Tiger333
04.06.2020 16:15

0.625

Объяснение:

ОДЗ:  

1/4-x>0 => x < 1/4, |x+1/2| ≠ 1 => x ≠ -3/2 и x  ≠ 1/2

 

Получаем, что:

x ∈ ( -ထ ; -3/2 )∪( -3/2 ; 1/4 )

После проверки log4 (1/4 - x), равно 1, мы поняли, что это неравенство не будет выполнятся.

Сделаем замену и рассмотрим два случая:

1. log4 (1/4 - x)>0 ⇔ 1/4-x>1 ⇔ x< -3/4

(log|x+1/2| (1/4-x) -1) * log16 (1/4 - x) > log4 1/4-x / |x+1/2| ⇔ 1/2(log|x+1/2|(1/4-x)-1) > log4(1/4-x)/log4(1/4-x) - log4|x+1/2|/log4(1/4-x)⇔1/2(log|x+1/2|(1/4-x)-1) >  

>-log1/4-x|x+1/2| ⇔ 1/2(t-1) > 1-1/t ⇔ t^2-3t+2/t > 0 ⇔ (t-1)(t-2)/t > 0

Решим через метод интервалов:

t ∉ (0;1)∪(2;+ထ) => t=log|x+1/2|(1/4-x)>0  

Мы знаем, что есть лучи (-ထ;-3/2) и (1/2;ထ)

В ОДЗ входит только (-ထ;-3/2), а это значит что нет такого луча x, что

t ∈ (0;1).

Решим t > 2

log|x+1/2|(1/4-x)>2 ⇔ 1/4-x > x+1/2|^2 ⇔ 1/4-x>x^2+x+1/4 ⇔ x ∈ (-2;0),

x ∈ (-2;0) ⋂ ( -ထ;-3/2 ) => x ∈ (-2;-3/2)

2. log4 (1/4 - x) < 0 ⇔ 1/4-x<1 ⇔ x>-3/4

Относительно t, неравенство = (t-1)(t-2)/t<0 , его решением является множество t ∈ ( -ထ ; 0 ) ∪ (1 : 2), в таком случае, мы будем рассматривать не весь луч, а часть, которая входит в ОДЗ: x ∈ (-3/4;1/4), при всех таких x |x+1/2| < 1 => t  ∈ (1;2) => |x+1/2|^2 < 1/4-x < |x+1/2|

Первое неравенство дает условие x ∈ (-2;0), а второе выполняется только при x > -1/8

Получаем решение x ∈ (-1/8;0)

В решение входят 2 интервала (-2;-3/2) и (-1/8;0)

Длина 1-го = 1/2, длина 2-го = -1/8

Получаем сумму 5/8

5/8 = 0.625

Надеюсь, хоть чем-то я тебе

P.s. я только сейчас увидел спец. знаки, переделывать не буду, по старинке, думаю, поймете

0,0(0 оценок)
Ответ:
Noname010203
Noname010203
31.01.2021 23:54
||2^x+x-2|-1| > 2^x-x-1
Раскрывать модули будем постепенно, снаружи, как будто снимая листья с кочана капусты)))
Помним о важном правиле:
|x| =x, если x>=0
|x|=-x, если x<0

Снимаем первый модуль и действуем согласно вышеупомянутому правилу:
{|2^x+x-2|-1 >2^x-x-1
{|2^x+x-2|-1> -2^x+x+1
Переносим "-1" из левой части в правую:
{|2^x+x-2| > 2^x-x
{|2^x+x-2| > -2^x+x+2

2) Снимаем второй модуль и также действуем согласно модульному правилу:
{2^x+x-2>2^x-x                        {2x-2>0
{2^x+x-2>x-2^x                        {2*2^x-2>0
{2^x+x-2>-2^x+x+2                  {2*2^x-4>0
{2^x+x-2>2^x-x-2                      {2x>0

{x>1                   {x>1                         
{2^x>1                {x>0
{2^x>2                {x>1
{x>0                    {x>0

Решением неравенства является промежуток (1; + беск.)                   

 
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота