Относительно t, неравенство = (t-1)(t-2)/t<0 , его решением является множество t ∈ ( -ထ ; 0 ) ∪ (1 : 2), в таком случае, мы будем рассматривать не весь луч, а часть, которая входит в ОДЗ: x ∈ (-3/4;1/4), при всех таких x |x+1/2| < 1 => t ∈ (1;2) => |x+1/2|^2 < 1/4-x < |x+1/2|
Первое неравенство дает условие x ∈ (-2;0), а второе выполняется только при x > -1/8
Получаем решение x ∈ (-1/8;0)
В решение входят 2 интервала (-2;-3/2) и (-1/8;0)
Длина 1-го = 1/2, длина 2-го = -1/8
Получаем сумму 5/8
5/8 = 0.625
Надеюсь, хоть чем-то я тебе
P.s. я только сейчас увидел спец. знаки, переделывать не буду, по старинке, думаю, поймете
||2^x+x-2|-1| > 2^x-x-1 Раскрывать модули будем постепенно, снаружи, как будто снимая листья с кочана капусты))) Помним о важном правиле: |x| =x, если x>=0 |x|=-x, если x<0
Снимаем первый модуль и действуем согласно вышеупомянутому правилу: {|2^x+x-2|-1 >2^x-x-1 {|2^x+x-2|-1> -2^x+x+1 Переносим "-1" из левой части в правую: {|2^x+x-2| > 2^x-x {|2^x+x-2| > -2^x+x+2
2) Снимаем второй модуль и также действуем согласно модульному правилу: {2^x+x-2>2^x-x {2x-2>0 {2^x+x-2>x-2^x {2*2^x-2>0 {2^x+x-2>-2^x+x+2 {2*2^x-4>0 {2^x+x-2>2^x-x-2 {2x>0
{x>1 {x>1 {2^x>1 {x>0 {2^x>2 {x>1 {x>0 {x>0
Решением неравенства является промежуток (1; + беск.)
0.625
Объяснение:
ОДЗ:
1/4-x>0 => x < 1/4, |x+1/2| ≠ 1 => x ≠ -3/2 и x ≠ 1/2
Получаем, что:
x ∈ ( -ထ ; -3/2 )∪( -3/2 ; 1/4 )
После проверки log4 (1/4 - x), равно 1, мы поняли, что это неравенство не будет выполнятся.
Сделаем замену и рассмотрим два случая:
1. log4 (1/4 - x)>0 ⇔ 1/4-x>1 ⇔ x< -3/4
(log|x+1/2| (1/4-x) -1) * log16 (1/4 - x) > log4 1/4-x / |x+1/2| ⇔ 1/2(log|x+1/2|(1/4-x)-1) > log4(1/4-x)/log4(1/4-x) - log4|x+1/2|/log4(1/4-x)⇔1/2(log|x+1/2|(1/4-x)-1) >
>-log1/4-x|x+1/2| ⇔ 1/2(t-1) > 1-1/t ⇔ t^2-3t+2/t > 0 ⇔ (t-1)(t-2)/t > 0
Решим через метод интервалов:
t ∉ (0;1)∪(2;+ထ) => t=log|x+1/2|(1/4-x)>0
Мы знаем, что есть лучи (-ထ;-3/2) и (1/2;ထ)
В ОДЗ входит только (-ထ;-3/2), а это значит что нет такого луча x, что
t ∈ (0;1).
Решим t > 2
log|x+1/2|(1/4-x)>2 ⇔ 1/4-x > x+1/2|^2 ⇔ 1/4-x>x^2+x+1/4 ⇔ x ∈ (-2;0),
x ∈ (-2;0) ⋂ ( -ထ;-3/2 ) => x ∈ (-2;-3/2)
2. log4 (1/4 - x) < 0 ⇔ 1/4-x<1 ⇔ x>-3/4
Относительно t, неравенство = (t-1)(t-2)/t<0 , его решением является множество t ∈ ( -ထ ; 0 ) ∪ (1 : 2), в таком случае, мы будем рассматривать не весь луч, а часть, которая входит в ОДЗ: x ∈ (-3/4;1/4), при всех таких x |x+1/2| < 1 => t ∈ (1;2) => |x+1/2|^2 < 1/4-x < |x+1/2|
Первое неравенство дает условие x ∈ (-2;0), а второе выполняется только при x > -1/8
Получаем решение x ∈ (-1/8;0)
В решение входят 2 интервала (-2;-3/2) и (-1/8;0)
Длина 1-го = 1/2, длина 2-го = -1/8
Получаем сумму 5/8
5/8 = 0.625
Надеюсь, хоть чем-то я тебе
P.s. я только сейчас увидел спец. знаки, переделывать не буду, по старинке, думаю, поймете
Раскрывать модули будем постепенно, снаружи, как будто снимая листья с кочана капусты)))
Помним о важном правиле:
|x| =x, если x>=0
|x|=-x, если x<0
Снимаем первый модуль и действуем согласно вышеупомянутому правилу:
{|2^x+x-2|-1 >2^x-x-1
{|2^x+x-2|-1> -2^x+x+1
Переносим "-1" из левой части в правую:
{|2^x+x-2| > 2^x-x
{|2^x+x-2| > -2^x+x+2
2) Снимаем второй модуль и также действуем согласно модульному правилу:
{2^x+x-2>2^x-x {2x-2>0
{2^x+x-2>x-2^x {2*2^x-2>0
{2^x+x-2>-2^x+x+2 {2*2^x-4>0
{2^x+x-2>2^x-x-2 {2x>0
{x>1 {x>1
{2^x>1 {x>0
{2^x>2 {x>1
{x>0 {x>0
Решением неравенства является промежуток (1; + беск.)