Какое наименьшее значение и при каком значении переменной принимает выражение х²+14х-16?
при х=-14/2 x=-7 y (-7)=(-7)²+14(-7)-16=49-98-16=-65
или рассмотрим функцию y=х²+14х-16=(x+7)²-65, графиком этой функции является парабола, ветки параболы направлены вверх, (коэффициент при х² равен 1>0), вершина параболы - точка с координатами х0=-7, у0=-65, в вершине функция y=х²+14х-16 принимает наименьшее значение.
Таким образом, наименьшее значение выражение х²+14х-16 принимает при х0=-7 , и оно равно у0=-65.
Во- первых, найдем значение производной, которое равно значению углового коэффициента касательной, в данном случае k=7 ( из уравнения касательной - это коэффициент перед х). y'=6x+1; 6x+1=7; 6x=6; x=1. То есть именно в точке х=1 прямая у=7х+а является касательной. Теперь, чтобы найти а, приравняем уравнения прямой и уравнение параболы(так как это их общая точка и значения функции у обоих графиков будут совпадать), потом подставим вместо х значение х=1. 3x^2+x-1=7x+а; 3x^2-6x-1=a; a=3*1-6*1-1; a=-4. ответ: а= - 4. Надеюсь, объяснение более чем подробноею
при х=-14/2 x=-7 y (-7)=(-7)²+14(-7)-16=49-98-16=-65
или рассмотрим функцию y=х²+14х-16=(x+7)²-65,
графиком этой функции является парабола, ветки параболы направлены вверх, (коэффициент при х² равен 1>0), вершина параболы - точка с координатами х0=-7, у0=-65, в вершине функция y=х²+14х-16 принимает наименьшее значение.
Таким образом, наименьшее значение выражение х²+14х-16 принимает при х0=-7 , и оно равно у0=-65.