Решение Через вершину B проведем прямую, параллельную AC, продлим медиану AА₁ до пересечения с этой прямой в точке T. Из равенства треугольников А₁BT и A А₁C (по стороне и двум прилежащим углам: B А₁ = А₁C, т. к. A А₁ — медиана, ∠B А₁T = ∠A А₁C — вертикальные, ∠ А₁BT = ∠ А₁CA — накрест лежащие при параллельных прямых AC, BT и секущей BC) следует, что BT = AC и A А₁ = KT. Из подобия треугольников AML и MBT (по двум углам: ∠MAL = ∠BTА₁, ∠ALB = ∠LBT — накрест лежащие при параллельных прямых AC, BT и секущих BL, AT) следует, что AL : BT = AL : AC = AM : MT. Так как АА₁ = А₁T, то AM : MT = 1 : 7. Тогда AL : AC = 1 : 7, а AL : LC = 1 : 6.
Решение
Через вершину B проведем прямую, параллельную AC, продлим медиану AА₁ до пересечения с этой прямой в точке T.
Из равенства треугольников А₁BT и A А₁C (по стороне и двум прилежащим углам: B А₁ = А₁C, т. к. A А₁ — медиана,
∠B А₁T = ∠A А₁C — вертикальные, ∠ А₁BT = ∠ А₁CA — накрест лежащие при параллельных прямых AC, BT и секущей BC) следует, что BT = AC и A А₁ = KT. Из подобия треугольников
AML и MBT (по двум углам: ∠MAL = ∠BTА₁,
∠ALB = ∠LBT — накрест лежащие при параллельных
прямых AC, BT и секущих BL, AT) следует,
что AL : BT = AL : AC = AM : MT. Так как АА₁ = А₁T,
то AM : MT = 1 : 7.
Тогда AL : AC = 1 : 7, а AL : LC = 1 : 6.
решение во вкладыше
1. Дана арифметическая прогрессия (an). Известно, что a1=2,5 и d=1,6.
Вычисли сумму первых шести членов арифметической прогрессии.
Запиши ответ в виде числа, при необходимости округлив его до десятых:
2.Вычисли 9-й член арифметической прогрессии, если известно, что a1 = 1,9 и d = 4,9.
a9 =
3.Вычисли сумму первых 6 членов арифметической прогрессии (an), если даны первые члены: −1;6...
S6 =
4.Дана арифметическая прогрессия: −2;−4...
Вычисли разность прогрессии и третий член прогрессии.
d=
b3=
5.Найди следующие два члена арифметической прогрессии и сумму первых четырёх членов, если a1=8 и a2=0,5.
a3=
a4=
S4
Объяснение:
здається так