Если А и В лежат по одну сторону от прямой, то расстояние от середины отрезка до прямой равно полусумме расстояний от концов отрезка до этой прямой. Если лежат по разные стороны от прямой, то полуразности этих расстояний. (12-4)/2 = 4 см.
На промежутке [-2π/3;0] функция cosx возрастает, а у=-2xcosx - убывает. Числа 19 -18/π -постоянные, они не влияют на поведение функции. Наибольшее значение при х = -2π/3. Оно равно 19-2*cos(-2π/3)-18/π = 19-2*(-1/2) -18/π = 20-18/π. Это в том случае, если косинус х.( без скобок).
в−7,9<c−7,9 - неравенство ВЕРНО.
2)в<с умножим обе части неравенства на -7,9 (знак повернётся)
−7,9в>−7,9c - неравенство ВЕРНО.
3)в<c умножим обе части неравенства на 7,9
7,9в<7,9c - неравенство ВЕРНО.
4)в<c умножим обе части неравенства на -1 (знак повернётся)
-в>-с прибавим к обеим частям неравенства 7,9
7,9-в>7,9-с - неравенство НЕВЕРНО.
5)в<c прибавим к обеим частям неравенства 7,9
в+7,9<c+7,9 - неравенство ВЕРНО.
Если Вы учитесь в 6 классе, думаю, достаточно будет ответов "верно-неверно", а если в 9 классе, то опишите каждый шаг.
Если лежат по разные стороны от прямой, то полуразности этих расстояний. (12-4)/2 = 4 см.
На промежутке [-2π/3;0] функция cosx возрастает, а у=-2xcosx - убывает. Числа 19 -18/π -постоянные, они не влияют на поведение функции. Наибольшее значение при х = -2π/3.
Оно равно 19-2*cos(-2π/3)-18/π = 19-2*(-1/2) -18/π = 20-18/π.
Это в том случае, если косинус х.( без скобок).