Самое маленькое трехзначное число - это 100. Если полагать, что меньшее из искомых чисел равно 100, то большее = 100*5 = 500 а сумма 500 + 100 = 600. По условию сумма 498, но это меньше, чем 600, чего не может быть. Значит среди трехзначных чисел задача не имеет решений. Пусть х - одно из чисел, тогда 498 - х - второе число, рассотрим два случая: 1. Если х - большее из чисел и тогда имеем уравнение х/(498 - х) = 5; 2. Если х - меньшее число, тогда (498 - х) /х = 5. Решая первое уравнение, получаем х = 2490 - 5х 6х = 2490 х = 415 498 - х = 83. Из второго уравнения находим 498 - х = 5х 6х = 498 х = 83 498 - х = 415. Оба случая привели к одному ответу. ответ: 83 и 415.
Строишь графики функций y = x² и y = x + 5, но в системе координат с дополнительной осью O, параллельной оси Оy, но сдвинутой на 4 вправо, т.е. провести ее надо через точку 4 по оси Ох. Построил? Теперь смотришь на знаки. Если на каком-то отрезке оси Ох знаки функции одинаковы, т.е. их графики одновременно или выше, или ниже оси Ох, то нужное нам произведение больше нуля, если находятся по разные стороны от оси Ох, то оно меньше нуля.
Т.е. в нашем случае ответ будет x ∈ (-бесконечности; -1], или x ≤ -1
Если полагать, что меньшее из искомых чисел равно 100,
то большее = 100*5 = 500
а сумма 500 + 100 = 600.
По условию сумма 498, но это меньше, чем 600, чего не может быть.
Значит среди трехзначных чисел задача не имеет решений.
Пусть х - одно из чисел,
тогда 498 - х - второе число,
рассотрим два случая:
1. Если х - большее из чисел и тогда имеем уравнение
х/(498 - х) = 5;
2. Если х - меньшее число, тогда
(498 - х) /х = 5.
Решая первое уравнение, получаем
х = 2490 - 5х
6х = 2490
х = 415
498 - х = 83.
Из второго уравнения находим
498 - х = 5х
6х = 498
х = 83
498 - х = 415.
Оба случая привели к одному ответу.
ответ: 83 и 415.
Строишь графики функций y = x² и y = x + 5, но в системе координат с дополнительной осью O, параллельной оси Оy, но сдвинутой на 4 вправо, т.е. провести ее надо через точку 4 по оси Ох.
Построил? Теперь смотришь на знаки. Если на каком-то отрезке оси Ох знаки функции одинаковы, т.е. их графики одновременно или выше, или ниже оси Ох, то нужное нам произведение больше нуля, если находятся по разные стороны от оси Ох, то оно меньше нуля.
Т.е. в нашем случае ответ будет x ∈ (-бесконечности; -1], или x ≤ -1