У2 - 10y - 24 = 0Это квадратное уравнение которое решается через формулу нахождения дискриминанта. у2 это а. а = 1 - 10у это в. в = -10 -24 это с. с = -24 Написали а,в,с. Теперь вспоминаем формулу нахождения дискриминанта и подставляем туда а, в, с. Д = в2 (2 это значит в квадрате) - 4 * а * с. * это умножить Д = (-10)2 - 4 * 1 * (-24) = 100 + 96 = 196 Дальше нам нужно будет находить корень из Д. Т.е. корень из 196, а это 14. Дальше находим х1 и х2, посредством формул. х1,2 = -в+- корень из Д / 2 * а подставляем х1 = - (-10) - 14 / 2 * 1 = 10 - 14 / 2 = - 4 / 2 = - 2 х2 = - (-10) + 14 / 2 * 1 = 10 + 14 / 2 = 24 / 2 = 12
А вот тут кроется подвох, ведь угол может быть задан в градусах, радианах, градах, минутах или секундах... Поскольку, при рассмотрении тригонометрических функций в математическом анализе всегда считается, что аргумент выражен в радианах, что упрощает запись; при этом само обозначение рад (rad) часто опускается, и тогда, при расчёте в радианах: A = cos0rad * tg45rad + 8 sin30rad = 1 * 1.6197751905 + 8 * (-0.9880316241) = −6,284477802; B = sin π/2 * ctg п/2 + 10 сos п/3 = 1 * 0 + 10 * 0,5 = 6; А + В = −6,284477802 + 6 = −0,284477802. При расчёте в градусах картина меняется: A = cos0° * tg45° + 8 sin30° = 1 * 1 + 8 * 0,5 = 5; B = sin π/2 * ctg π/2 + 10 сos π/3 = 0.027412133592 * 36.4664871307475277 + 10 * 0.999832979459 = 10,997954011; А + В = 5 + 10,997954011 = 15,997954011. Автору вопроса остаётся только определиться, в какой системе он желает получить ответ.
у2 это а. а = 1
- 10у это в. в = -10
-24 это с. с = -24
Написали а,в,с. Теперь вспоминаем формулу нахождения дискриминанта и подставляем туда а, в, с.
Д = в2 (2 это значит в квадрате) - 4 * а * с. * это умножить
Д = (-10)2 - 4 * 1 * (-24) = 100 + 96 = 196
Дальше нам нужно будет находить корень из Д. Т.е. корень из 196, а это 14.
Дальше находим х1 и х2, посредством формул.
х1,2 = -в+- корень из Д / 2 * а
подставляем х1 = - (-10) - 14 / 2 * 1 = 10 - 14 / 2 = - 4 / 2 = - 2
х2 = - (-10) + 14 / 2 * 1 = 10 + 14 / 2 = 24 / 2 = 12
Поскольку, при рассмотрении тригонометрических функций в математическом анализе всегда считается, что аргумент выражен в радианах, что упрощает запись; при этом само обозначение рад (rad) часто опускается, и тогда, при расчёте в радианах:
A = cos0rad * tg45rad + 8 sin30rad = 1 * 1.6197751905 + 8 * (-0.9880316241) = −6,284477802;
B = sin π/2 * ctg п/2 + 10 сos п/3 = 1 * 0 + 10 * 0,5 = 6;
А + В = −6,284477802 + 6 = −0,284477802.
При расчёте в градусах картина меняется:
A = cos0° * tg45° + 8 sin30° = 1 * 1 + 8 * 0,5 = 5;
B = sin π/2 * ctg π/2 + 10 сos π/3 = 0.027412133592 * 36.4664871307475277 + 10 * 0.999832979459 = 10,997954011;
А + В = 5 + 10,997954011 = 15,997954011.
Автору вопроса остаётся только определиться, в какой системе он желает получить ответ.