Это задача на наибольшее(наименьшее) значение функции. План наших действий: 1) ищем производную 2) приравниваем её к нулю, решаем получившееся уравнение 3) смотрим: какие корни попали в указанный промежуток 4) вычисляем значения данной функции в этих корнях и на концах промежутка. 5) пишем ответ начали? 1) y' = 2Сosx + 24/π 2) 2Сosx + 24/π = 0 2Сosx -= - 24/π Сosx = - 12/π нет решений 3) решений нет, значит, в функцию подставим концы промежутка и найдём из ответов наибольшее значение. 4) а) х = -5π/6 у = 2Sin(-5π/6) +24*(-5π/6)/π + 6 = -2*1/2 - 20 +6 = -1 -20 +6 = -13 б) х = 0 у = 0+0 +6 = 6 ответ: max y = 0
Найдём точку пересечения графиков, решив систему: 2x - y = 1 x + y = 5 Сложим первое со вторым: 2x + x - y + y = 1 + 5 3x = 6 x = 2 y = 5 - x = 5 - 2 = 3 Значит, графики пересекаются в точке (2; 3).
2(x + y + 1) = 1 - 2(x - 2) 2x + 2y + 2 = 1 - 2x + 4 2y = 5 - 2x - 2x - 2 2y = 3 - 4x y = -2x + 1,5 Прямые, заданные уравнением y = kx + b тогда параллельны, когда их угловые коэффициенты равны. В данном случае k = -2. Подставляем в уравнение y = kx + b значения x, y и k. 3 = -2·2 + b -4 + b = 3 b = 7 Значит, искомая прямая задана уравнение y = -2x + 7. ответ: y = -2x + 7.
1) ищем производную
2) приравниваем её к нулю, решаем получившееся уравнение
3) смотрим: какие корни попали в указанный промежуток
4) вычисляем значения данной функции в этих корнях и на концах промежутка.
5) пишем ответ
начали?
1) y' = 2Сosx + 24/π
2) 2Сosx + 24/π = 0
2Сosx -= - 24/π
Сosx = - 12/π
нет решений
3) решений нет, значит, в функцию подставим концы промежутка и найдём из ответов наибольшее значение.
4) а) х = -5π/6
у = 2Sin(-5π/6) +24*(-5π/6)/π + 6 = -2*1/2 - 20 +6 = -1 -20 +6 = -13
б) х = 0
у = 0+0 +6 = 6
ответ: max y = 0
2x - y = 1
x + y = 5
Сложим первое со вторым:
2x + x - y + y = 1 + 5
3x = 6
x = 2
y = 5 - x = 5 - 2 = 3
Значит, графики пересекаются в точке (2; 3).
2(x + y + 1) = 1 - 2(x - 2)
2x + 2y + 2 = 1 - 2x + 4
2y = 5 - 2x - 2x - 2
2y = 3 - 4x
y = -2x + 1,5
Прямые, заданные уравнением y = kx + b тогда параллельны, когда их угловые коэффициенты равны.
В данном случае k = -2.
Подставляем в уравнение y = kx + b значения x, y и k.
3 = -2·2 + b
-4 + b = 3
b = 7
Значит, искомая прямая задана уравнение y = -2x + 7.
ответ: y = -2x + 7.