Применяем формулу суммы бесконечно убывающей прогрессии S=b/(1-q) b=0,024 q=0,01 Бесконечно убывающая прогрессия начинается с третьего слагаемого. 3+0,2 + 0,024+0,00024+...=3+ 0,2+(0,024/(1-0,01))=3+0,2+(0,024/0,99)= =3+0,2+(24/990)=3+(2/10)+(24/990)=3+(2·99+24)/990=3 целых 222/990
Можно по правилу 3+0,2(24)=3+(224-2)/(990) В числителе из числа 224 вычитаем число 2 ( цифра, до периода) В знаменателе пишем столько девяток, сколько цифр в периоде и приписываем столько нулей, сколько цифр до периода 99 - потому что две цифры в периоде (24) 990- потому что до начала периода одна цифра (2) О т в е т. 3,2(24)=3 целых 222/990= 3 целых 37/165
Объяснение:
https://tex.z-dn.net/?f=%20%5Csqrt%7B11-4%20%5Csqrt%7B7%7D%7D%2B%20%5Csqrt%7B16-6%20%5Csqrt%7B7%7D%7D%3D%20%5Csqrt%7B7-2%2A2%20%5Csqrt%7B7%7D%2B4%7D%2B%5Csqrt%7B9-2%2A3%2A%5Csqrt%7B7%7D%2B7%7D%3D%20%5C%5C%20%3D%5Csqrt%7B%28%5Csqrt%7B7%7D%29%5E2-2%2A2%20%5Csqrt%7B7%7D%2B2%5E2%7D%2B%5Csqrt%7B3%5E2-2%2A3%2A%5Csqrt%7B7%7D%2B%28%5Csqrt%7B7%7D%29%5E2%7D%3D%20%5C%5C%20%3D%5Csqrt%7B%28%5Csqrt%7B7%7D-2%29%5E2%7D%2B%5Csqrt%7B%283-%20%5Csqrt%7B7%7D%29%5E2%7D%3D%7C%5Csqrt%7B7%7D-2%7C%2B%7C3-%20%5Csqrt%7B7%7D%7C%3D%20%5C%5C%20%3D%5Csqrt%7B7%7D-2%2B3-%20%5Csqrt%7B7%7D%3D1
Это ссылка!
S=b/(1-q)
b=0,024
q=0,01
Бесконечно убывающая прогрессия начинается с третьего слагаемого.
3+0,2 + 0,024+0,00024+...=3+ 0,2+(0,024/(1-0,01))=3+0,2+(0,024/0,99)=
=3+0,2+(24/990)=3+(2/10)+(24/990)=3+(2·99+24)/990=3 целых 222/990
Можно по правилу
3+0,2(24)=3+(224-2)/(990)
В числителе
из числа 224 вычитаем число 2 ( цифра, до периода)
В знаменателе пишем столько девяток, сколько цифр в периоде и приписываем столько нулей, сколько цифр до периода
99 - потому что две цифры в периоде (24)
990- потому что до начала периода одна цифра (2)
О т в е т. 3,2(24)=3 целых 222/990= 3 целых 37/165