1.Натуральное число делится на 10 без остатка только в том случае, если оно оканчивается на нуль. Если последняя цифра натурального числа не 0, то число на 10 без остатка не делится.
2.Натуральное число делится на 5 без остатка в том случае, если оно оканчивается на 0 или на 5.
Если последняя цифра натурального числа не 0 и не 5, то число на 5 без остатка не делится.
3.Если последняя цифра в записи натурального числа четная (2, 4, 6, 8) или 0 , то это число делится на 2 без остатка.
Если последняя цифра натурального числа нечетная (1, 3, 5, 7, 9), то число на 2 без остатка не делится.
В решении.
Объяснение:
Нужно изучить свойства корней.
а) (2√5 + 3√2)(√5 - √8)=
=(2√5 + 3√2)(√5 - √4*2)=
=(2√5 + 3√2)(√5 - 2√2)=
умножить каждый член первых скобок на каждый член вторых скобок:
=2√5 * √5 + 3√2 * √5 - 2√5 * 2√2 - 3√2 * 2√2 =
= 2 * 5 + 3√10 - 4√10 -6 * 2 =
=10 - 12 - √10 =
= -2 - √10;
б) (√11 - 0,5√22)(0,5√22 + √11) =
умножить каждый член первых скобок на каждый член вторых скобок:
=√11*0,5√22 + √11*√11 - 0,5√22*0,5√22 - 0,5√22*√11 =
=0,5√242 + 11 - 0,5*22 - 0,5√242 =
=0,5√242 + 11 - 11 - 0,5√242 =
=0 (все члены выражения взаимно уничтожаются).
в) (√42)² - (2√6 - 3√2)²=
вторые скобки квадрат разности, по формуле сокращённого умножения:
=42 - [(2√6)² - 2*2√6*3√2 + (3√2)²]=
=42 - (4*6 -12√12 + 9*2)=
=42 - (24 - 12√4*3 + 18)=
=42 - (24 - 12*2√3 + 18)=
=42 - (42 - 24√3)=
=42 - 42 + 24√3=
=24√3.
1.Натуральное число делится на 10 без остатка только в том случае,
если оно оканчивается на нуль. Если последняя цифра натурального числа
не 0, то число на 10 без остатка не делится.
2.Натуральное число делится на 5 без остатка в том случае,
если оно оканчивается на 0 или на 5.
Если последняя цифра натурального числа не 0 и не 5,
то число на 5 без остатка не делится.
3.Если последняя цифра в записи натурального числа четная
(2, 4, 6, 8) или 0 , то это число делится на 2 без остатка.
Если последняя цифра натурального числа нечетная
(1, 3, 5, 7, 9), то число на 2 без остатка не делится.