Простыми преобразованиями эту задачу не решить, будем использовать арифметику остатков.
1-ое свойство, которое понадобится
То есть мы спокойно можем заменить каждое слагаемое сравнимым с ним по модулю m. То есть каждое слагаемое в нашей сумме будем рассматривать отдельно.
2-ое свойство, которое нам понадобится:
То есть довольно аналогичная вещь в произведении
На нашем примере все увидим
Находим остатки по модулю 31
Рассматриваем первое слагаемое. Просто двойка не годится, нам нужно найти ближайшее к 31 число, превосходящее его (иногда там в отрицательные числа залезаем, например, , но сейчас это не нужно), нам повезло, это 32
Учитываем, что , получаем
То есть остаток от деления первого слагаемое на 31 получился равным 10. Прекрасно, аналогично со вторым
Остаток 21, чудесно. Выполняем последний шаг.
То есть остаток от деления исходного числа на 31 равен 0, следовательно, исходное число делится на 31, что и требовалось доказать.
Простыми преобразованиями эту задачу не решить, будем использовать арифметику остатков.
1-ое свойство, которое понадобится
То есть мы спокойно можем заменить каждое слагаемое сравнимым с ним по модулю m. То есть каждое слагаемое в нашей сумме будем рассматривать отдельно.
2-ое свойство, которое нам понадобится:
То есть довольно аналогичная вещь в произведении
На нашем примере все увидим
Находим остатки по модулю 31
Рассматриваем первое слагаемое. Просто двойка не годится, нам нужно найти ближайшее к 31 число, превосходящее его (иногда там в отрицательные числа залезаем, например, , но сейчас это не нужно), нам повезло, это 32
Учитываем, что , получаем
То есть остаток от деления первого слагаемое на 31 получился равным 10. Прекрасно, аналогично со вторым
Остаток 21, чудесно. Выполняем последний шаг.
То есть остаток от деления исходного числа на 31 равен 0, следовательно, исходное число делится на 31, что и требовалось доказать.
1)найти стационарные точки
f(x)=x^4-200x^2+56
f`(x) = 4x³ - 400x
4x³ - 400x = 0
4x*(x² - 100) = 0
4x = 0, x₁ = 0
x² - 100 = 0
x² = 100
x₂ = - 10
x₃ = 10
ответ: x₁ = 0 ; x₂ = - 10 ; x₃ = 10 - стационарные точки
2) определить интервалы возрастания функций
f(x)=x^3-x^2-x^5+23
1. Находим интервалы возрастания и убывания.
Первая производная.
f'(x) = -5x⁴ + 3x² - 2x
или
f'(x) = x * (-5x³ + 3x - 2)
Находим нули функции.
Для этого приравниваем производную к нулю
x * (-5x³ + 3x - 2) = 0
Откуда:
x₁ = - 1
x₂ = 0
(-1; 0) f'(x) > 0 функция возрастает
3) определить интервалы убывания функций
f(x)=x^3-7,5x^2+1
1. Находим интервалы возрастания и убывания. Первая производная.
f'(x) = 3x² - 15x
или
f'(x) = x*(3x - 15)
Находим нули функции. Для этого приравниваем производную к нулю
x*(3x - 15) = 0
Откуда:
x₁ = 0
x₂ = 5
(0; 5) f'(x) < 0 функция убывает
4) вычислить значение функции в точке максимума
f(x)=x^3-3^2-9x+1
Решение.
Находим первую производную функции:
y' = 3x² - 9
Приравниваем ее к нулю:
3x² - 9 = 0
x² = 3
x₁ = - √3
x₂ = √3
Вычисляем значения функции
f(- √3) = - 8 + 6√3 точка максимума
f(√3) = - 6√3 - 8
fmax = - 8 + 6√3
ответ: fmax = - 8 + 6√3