Ясно, что мы не ищем значение производной, например, в точке (1;3), ее там просто нет, т.к. не существует касательной в данной точке. Поэтому предположу, что необходимо знать приращение функции и аргумента и по этим данным найти значение производной именно на участке, на третьем ясно, что производная функции равна нулю, т.к. ее приращение
равно 0-0, а приращение аргумента 3-2=1; 0/1=0
На первом промежутке функция возрастающая. поэтому значение производной на этом участке положительно, Δу/Δх= (3-0)/(1-0)=3, на втором участке функция убывает. ее производная отрицательна.
Пусть скорость в стоячей воде равна х км/ч , тогда скорость против течения равна (x-2) км/ч, а по течению - (х+2) км/ч. Время, пройденное против течения равно 10/(x-2) ч, а по течению - 12/(х+2) ч.
Составим уравнение
10/(x-2) + 12/(x+2) = 1
10(x+2) + 12(x-2) = (x+2)(x-2)
10x + 20 + 12x - 24 = x² - 4
x² - 22x =0
x (x - 22) = 0
x1 = 0 - не удовлетворяет условию x2 = 22 км/ч - скорость в стоячей воде
Ясно, что мы не ищем значение производной, например, в точке (1;3), ее там просто нет, т.к. не существует касательной в данной точке. Поэтому предположу, что необходимо знать приращение функции и аргумента и по этим данным найти значение производной именно на участке, на третьем ясно, что производная функции равна нулю, т.к. ее приращение
равно 0-0, а приращение аргумента 3-2=1; 0/1=0
На первом промежутке функция возрастающая. поэтому значение производной на этом участке положительно, Δу/Δх= (3-0)/(1-0)=3, на втором участке функция убывает. ее производная отрицательна.
Δу/Δх= (0-3)/(2-1)=-3.
Если я верно понял задание.
Составим уравнение
10/(x-2) + 12/(x+2) = 1
10(x+2) + 12(x-2) = (x+2)(x-2)
10x + 20 + 12x - 24 = x² - 4
x² - 22x =0
x (x - 22) = 0
x1 = 0 - не удовлетворяет условию
x2 = 22 км/ч - скорость в стоячей воде