Пусть один катет равен а, второй b, тогда их разность будет a-b=23. В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов,т.е. 37^2=a^2+b^2 Составим систему a-b=23 a^2+b^2=1369 в первом уравнении выразим одну переменную через другую, получим a=23+b подставим данное выражение в место а во второе уравнение, выпишем его и решим отдельно (23+b)^2+b^2=1369 раскроем скобки по формуле сокращенного умножения 529+46b+b^2+b^2=1369 2b^2+46b-840=0 для упрощенного решения сократим на 2 b^2+23b-420=0 находим корни по дискрименанту D=529+1680=2209 b1=-(23-47)/2=12 b2=-(23+47)/2=-35 не является решением, т.к. сторона не может быть отрицательной, поэтому получаем одно решение b=12(один катет). Теперь найдем второй катет, для этого найденное значение b подставим в первое уравнение системы a=23+12=45(второй катет). Теперь найдем периметр(сумма всех сторон) P=45+12+37=94
Здесь все уравнения будут решаться Дискриминантом. 1) -x^2+12x-35=0 (Перед квадратом минус,поменяв его на плюс все знаки в уравнении поменяются на противоположные) x^2-12x+ 35=0 D=b^2-4ac= (-12)^2-4*1*35= 144-140=4 (4 в корне =2) x1= -b+- /2a= 12+2/2=14/2=7 x2= 12-2/2=5 Дальше все так же как и сверху, просто пишу решения 2) y^2+16y+21=0 D=16^2-4*1*21= 256-84= 172 (Корень не извлекается, так и остается) y1= -16 - /2 y2= -16 - /2
a-b=23
a^2+b^2=1369 в первом уравнении выразим одну переменную через другую, получим
a=23+b подставим данное выражение в место а во второе уравнение, выпишем его и решим отдельно
(23+b)^2+b^2=1369 раскроем скобки по формуле сокращенного умножения
529+46b+b^2+b^2=1369
2b^2+46b-840=0 для упрощенного решения сократим на 2
b^2+23b-420=0 находим корни по дискрименанту
D=529+1680=2209
b1=-(23-47)/2=12
b2=-(23+47)/2=-35 не является решением, т.к. сторона не может быть отрицательной, поэтому получаем одно решение b=12(один катет). Теперь найдем второй катет, для этого найденное значение b подставим в первое уравнение системы
a=23+12=45(второй катет). Теперь найдем периметр(сумма всех сторон)
P=45+12+37=94
1) -x^2+12x-35=0 (Перед квадратом минус,поменяв его на плюс все знаки в уравнении поменяются на противоположные)
x^2-12x+ 35=0
D=b^2-4ac= (-12)^2-4*1*35= 144-140=4 (4 в корне =2)
x1= -b+- /2a= 12+2/2=14/2=7
x2= 12-2/2=5
Дальше все так же как и сверху, просто пишу решения
2) y^2+16y+21=0
D=16^2-4*1*21= 256-84= 172 (Корень не извлекается, так и остается)
y1= -16 - /2
y2= -16 - /2
3) y^2+y-12=0
D= 1^2+ 4*1*12=1+48=49 (Корень из 49 = 7)
y1= -1+7/2= 3
y2= -1-7/2= -4
4) y^2-28y+49=0
D= (-28)^2-4*1*49= 784-196= 588 ( Корень не извлекается)
y1= 28+ /2
y2= 28 - /2