В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
Nastya4002
Nastya4002
18.09.2020 14:33 •  Алгебра

Решите систему линейных уравнений методом Крамера и методом обратной матрицы ​


Решите систему линейных уравнений методом Крамера и методом обратной матрицы ​

Показать ответ
Ответ:
yesayes
yesayes
09.12.2022 02:26

ответ: x1=1 ; x2= (-1+√33)/2 ;  x3= (-1-√33)/2

Объяснение:

Необходимо решить следующее уравнение:

x^3+8=9*∛(9x-8)

Преобразуем данное уравнение:

x^3= 9*∛(9x-8) -8

x=∛( 9*∛(9x-8) -8 )

Пусть: f(x)=∛(9x-8)

Тогда уравнение принимает вид:

x=f (f(x) )

Рассмотри вс уравнение вида:

x=f(x)  

Предположим , что оно имеет корень x0 , то есть верно равенство:

1) x0=f(x0)

Вернемся к уравнению:

2) f( f(x) )=x

Можно заметить , что x=x0 так же является корнем этого уравнения.

Действительно , если подставить x0 имеем:

f ( f(x0) )=x0

Поскольку : f(x0)=x0 , то f ( f(x0) )=f(x0)

Откуда уравнение эквивалентно следующему:

f(x0)=x0 , что эквивалентно уравнению 1 , а значит x0 является корнем уравнения : f( f(x) )=x.

То есть все те корни ,что имеет уравнение: f(x)=x , обязательно имеет и уравнение : f( f(x) )=x

Запишем уравнение f(x)=x для нашей функции:

∛(9x-8)=x

x^3-9x+8=0

(x^3-1) -9*(x-1)=0

(x-1)*(x^2+x+1) -9*(x-1)=0

(x-1)*(x^2+x-8)=0

x1=1

x^2+x-8=0

D=1+32=22

x23=(-1+-√33)/2

Покажем теперь что уравнение :

x=∛( 9*∛(9x-8) -8 )  

не имеет  других корней кроме выше приведенных. (  то есть  данные уравнения имеют идентичные корни)

Не  трудно заметить ,что  функция : f(x)=∛(9x-8)   монотонно возрастает.

То  есть ,для такой функции справедливо следующее утверждение:

Если x1>x2 , то  f(x1)>f(x2)

Предположим, что x0 корень уравнения :

f( f(x) )=x , то  есть верно что:

f( f(x0) )=x0

Предположим , что x0 не является корнем уравнения  f(x)=x , то

есть  f(x0)≠x0

Пусть: f(x0)>x0

Тогда согласно утверждению выше:

f( f(x0) )>f(x0)

Но  поскольку  f (f (x0) )=x0 , то

x0>f(x0) , что  противоречит неравенству:  f(x0)>x0.

То  есть такое невозможно.

Аналогично доказывается невозможность случая: f(x0)<x0

f( f(x0) )<f(x0)

x0<f(x0) , то  есть противоречие.

Вывод: если уравнение  f(f(x))=0  имеет  корень x0, то  этот корень имеет и уравнение f(x)=x , но  так же мы до этого показали то что , если f(x)=x имеет корень x0, то  и уравнение  f(f(x))=0 имеет этот корень.

Таким образом заключаем , что уравнение:

x=∛( 9*∛(9x-8) -8 )  

имеет то же самое множество корней , что и  уравнение:

x= ∛(9x-8)

ответ: x1=1 ; x2= (-1+√33)/2 ;  x3= (-1-√33)/2

0,0(0 оценок)
Ответ:
1KoTObOpMoT1
1KoTObOpMoT1
11.02.2020 07:07
Х-вес меди в исходном сплаве
х+10               х
 -  =5/100
х+10+10        х+10

х+10           х
 -  =0,05
х+20         х+10

х+10         х
 -   - 0,05=0 умножим на (х+10)(х+20)
х+20       х+10

(х+10)^2-х(х+20)-0,05(х+10)(х+20)=0
x^2+20x+100-х^2-20x-0,05(х^2+20x+10x+200)=0
100-0,05(х^2+30x+200)=0
100-0,05х^2-1.5x-10=0
-0,05х^2-1.5x+90=0 делим на -0,05
x^2+30x-1800=0
D = 30² - 4·1·(-1800) = 900 + 7200 = 8100
x1 = (-30 - √8100)/(2*1) = (-30 - 90)/2 = -120/2 = -60 не подходит
x2 = (-30 + √8100)/(2*1) = (-30 + 90)/2 = 60/2 =30 кг меди в сплаве было
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота