Решите систему нелинейных уравнений с двумя переменными путем подстановки. Дескриптор: выражает одну переменную другой. Путем подстановки создает систему нелинейных уравнений с двумя переменными. Четко показывает решение.
Определение степени. Напомним, что произведение двух одинаковых чисел аа называется второю степенью (или квадратом) числа а, произведение трех одинаковых чисел ааа называется третьей степенью (или кубом) числа а; вообще произведение n одинаковых чисел аа... а называется n-ю степенью числа а. Действие, посредством которого находится степень данного числа, называется возвышением в степень (вторую, третью и т. д.). Повторяющийся сомножитель называется основанием степени, а число одинаковых сомножителей называется показателем степени.
Сокращенно степени обозначаются так: а2, а3, а4... и т. д.
Мы сначала будем говорить о простейшем случае возвышения в степень, именно о возвышении в квадрат; а пoсле рассмотрим возвышение и в другие степени.
f(x) = (4x^2 + 6x + 9) / (3x)
возьмем производную :
f'(x) = ((4x^2 + 6x + 9)' * 3x - (4x^2 + 6x + 9) * (3x)')/ (3x)^2 = ((8x + 6) * 3x - (4x^2 + 6x + 9) * 3) / (9x^2) = (24x^2 + 18x - 12x^2 - 18x - 27)/(9x^2) = (12x^2 - 27)/(9x^2)
Приравняем производную к нулю и получим точки экстремума:
(12x^2 - 27)/(9x^2) = 0
12x^2 - 27 = 0
x^2 = 27/12
x = +- sqrt(27/12)
По правилу Дарбу на промежутке
(- бесконечность ; - sqrt(27/12)) функция возрастает
( - sqrt(27/12) ; 0 ) возрастает
(0 ; sqrt(27/12) ) убывает
(sqrt(27/12) ; + бесконечность) возрастает
значит точка sqrt(27/12) - точка минимума
подставим ее в уравнение и получим результат равный 6
ответ: 6
Сокращенно степени обозначаются так: а2, а3, а4... и т. д.
Мы сначала будем говорить о простейшем случае возвышения в степень, именно о возвышении в квадрат; а пoсле рассмотрим возвышение и в другие степени.