Такие уравнения решаются по одному приёму: надо снять знак модуля. При этом учитывать, что |x| = x при х ≥ 0 |x| = -x при х <0 Придётся определять какое число стоит под знаком модуля, чтобы потом этот самый знак снять. каждое подмодульное выражение = 0 при х = -2, 3, 2 Поставим эти числа на координатной прямой -∞ -2 2 3 +∞ Получили 4 промежутка. на каждом отдельно будет уравнение иметь свой вид а) (-∞; -2) -(х+2) +(х-3) +(х-2) = 3 -х-2+х-3+х-2 = 3 х = 10 ( в указанный промежуток не входит) б)[-2; 2) х+2 +х -3 +х-2 = 3 3х = 6 х = 2 ( в указанный промежуток не входит) в) [2; 3) х +2 +х -3 -х -2 = 3 х =6 ( в указанный промежуток не входит) г)[3; +∞) х +2 -х+3 -х+2 = 3 -х = -4 х = 4 ( в указанный промежуток входит) ответ: 4
|x| = -x при х <0
Придётся определять какое число стоит под знаком модуля, чтобы потом этот самый знак снять.
каждое подмодульное выражение = 0 при х = -2, 3, 2
Поставим эти числа на координатной прямой
-∞ -2 2 3 +∞
Получили 4 промежутка. на каждом отдельно будет уравнение иметь свой вид
а) (-∞; -2)
-(х+2) +(х-3) +(х-2) = 3
-х-2+х-3+х-2 = 3
х = 10 ( в указанный промежуток не входит)
б)[-2; 2)
х+2 +х -3 +х-2 = 3
3х = 6
х = 2 ( в указанный промежуток не входит)
в) [2; 3)
х +2 +х -3 -х -2 = 3
х =6 ( в указанный промежуток не входит)
г)[3; +∞)
х +2 -х+3 -х+2 = 3
-х = -4
х = 4 ( в указанный промежуток входит)
ответ: 4
15км/ч
Объяснение:
я сокращу названия: дом=Д
автостанция=А
пусть скорость велосипедиста
от А до Д =х, тогда скорость
от Д до А=х+3. Зная, что расстояние от Д до А= 30км и разница во времени составила 30 минут, составим уравнение:
30минут=1/2часа
найдём общий знаменатель:
перемножим числитель и знаменатель соседних
дробей между собой крест накрест и получим:
х²+3х=90×2
х²+3х=180
х²+3х–180=0
Д=9–4(–180)=9+720=729
х1=(–3–27)/2= –30÷2= –15
х2=(–3+27)/2=24/2=12
х1 нам не подходит поскольку скорость не может быть отрицательной поэтому используем х2=12
Итак: скорость велосипедиста от А до Д=12км/ч, тогда скорость от дома до А=12+3=15 км/ч