будем считать, что функция называется f(x)f(x).из условия про нее известно, что f(−4)=2f(−4)=2 (точка a), f(−2)=−4f(−2)=−4 (точка b), f(4)=6f(4)=6 (точка с), а между этими точками (узлами) функция линейна, поэтому для построения графика функции f(x)f(x) нужно узлы соединить отрезками.
функции f(2x)f(2x), f(x/2)f(x/2), f(−0,5x)f(−0,5x), f(−3x)f(−3x), тоже линейны между узлами, поэтому для построения их графиков нужно найти значения в узлах, а потом соединить полученные точки отрезками.
например, f(2x)f(2x), при x=−2x=−2 равно f(−4)=2f(−4)=2, поэтому точка a1(−2,2)a1(−2,2) является узлом функцииf(2x)f(2x). аналогично, f(2x)f(2x), при x=−1x=−1 равно f(−2)=−4f(−2)=−4, поэтому точка b1(−1,−4)b1(−1,−4) - тоже узелf(2x)f(2x), как и точка с1(2,6)с1(2,6). для построения графика функции f(2x)f(2x) нужно пары точек a1,,b1a1,,b1 и b1,,c1b1,,c1 соединить отрезками. для функции f(x/2)f(x/2) аналогично получаем узлы a2(−8,2)a2(−8,2), b2(−4,−4)b2(−4,−4), c2(8,6)c2(8,6) и т.д.
будем считать, что функция называется f(x)f(x).из условия про нее известно, что f(−4)=2f(−4)=2 (точка a), f(−2)=−4f(−2)=−4 (точка b), f(4)=6f(4)=6 (точка с), а между этими точками (узлами) функция линейна, поэтому для построения графика функции f(x)f(x) нужно узлы соединить отрезками.
функции f(2x)f(2x), f(x/2)f(x/2), f(−0,5x)f(−0,5x), f(−3x)f(−3x), тоже линейны между узлами, поэтому для построения их графиков нужно найти значения в узлах, а потом соединить полученные точки отрезками.
например, f(2x)f(2x), при x=−2x=−2 равно f(−4)=2f(−4)=2, поэтому точка a1(−2,2)a1(−2,2) является узлом функцииf(2x)f(2x). аналогично, f(2x)f(2x), при x=−1x=−1 равно f(−2)=−4f(−2)=−4, поэтому точка b1(−1,−4)b1(−1,−4) - тоже узелf(2x)f(2x), как и точка с1(2,6)с1(2,6). для построения графика функции f(2x)f(2x) нужно пары точек a1,,b1a1,,b1 и b1,,c1b1,,c1 соединить отрезками. для функции f(x/2)f(x/2) аналогично получаем узлы a2(−8,2)a2(−8,2), b2(−4,−4)b2(−4,−4), c2(8,6)c2(8,6) и т.д.
1) Найди дискриминант квадратного уравнения 8x²+4x+12=0.
D = b² - 4ac = 16 - 4·8·12 = 16 - 384 = -368.
2) Найди корни квадратного уравнения x²+7x+12=0.
По т., обратной к т. Виетта, имеем х₁ = -4; x₂ = -3.
3) Реши квадратное уравнение 2(5x−15)²−7(5x−15)+6=0.
Рациональным будет метод введения новой переменной.
Пусть 5x−15 = t, тогда имеем:
2t²−7t+6=0; D = b² - 4ac = 49 - 4·2·6 = 49 - 48 = 1; √D = 1
t₁ = (7 + 1)/4 = 2; t₂ = (7 - 1)/4 = 1,5.
Возвращаемся к замене:
5x−15 =2; 5x = 2 + 15; 5x = 17; x = 17/5; x₁ = 3,4.
5x−15 = 1,5; 5x = 1,5 + 15; 5x = 16,5; x = 16,5/5; x₂ = 3,3.
ответ: 3,4; 3,3.
4)Найди корни уравнения −8,9(x−2,1)(x−31)=0.
x−2,1 = 0 или x−31 = 0.
х₁ = 2,1 х₂ = 31.
ответ: 2,1; 31.
5) Сократи дробь (x−4)²/(x²+2x−24) = (x−4)²/((x + 6)(x − 4)) = (х - 4)/(х + 6).
Полученная дробь: (х - 4)/(х + 6).
6)Сократи дробь (5x²−32x+12)/(x³−216).
5x²−32x+12 = 0; D = b² - 4ac = 1024 - 480 = 784; √D = 28.
x₁ = (32 + 28)/10 = 6; x₂ = (32 - 28)/10 = 0,4
Имеем: (5x²−32x+12)/(x³−216) = ((x - 6)(5x - 2))/((x - 6)(x² + 6x + 36)) =
= (5x - 2)/(x² + 6x + 36).
7) Разложи на множители квадратный трехчлен x² + 8x + 15.
x² + 8x + 15 = 0; x₁ = -3; x₂ = -5.
имеем, x² + 8x + 15 = (x + 3)(x + 5).