В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
kirllakylov
kirllakylov
23.05.2023 14:22 •  Алгебра

Решите систему неравенств {4−3x≥0, {2+1>0

Показать ответ
Ответ:
Isildur3
Isildur3
13.05.2021 18:53
Решение
Не выполняя построения, установите взаимное расположение графиков лин.функций:
Будем проверять равенство коэффициентов при х и свободные члены
y = k₁ + b₁  y = k₂x + b₂
сократим дроби
1)  y=12/16x+8/10 = 3/4x + 4/5 
y=15/20x+4/5 = 3/4x + 4/5
k₁ = k₂   и  b₁ = b₂
Таким образом:
y=12/16x+8/10 и y=15/20x+4/5
уравнения равносильны, значит графики этих функций - одна и та же прямая. То есть графики сливаются или совпадают.

2)  y=8/9x-1/7 и y=8/9x+1/10
k₁ = k₂ = 8/9
значит графики этих функций - параллельны.

3)  у=7x+8 и y=*x-4
k₁ ≠ k₂  и b₁ ≠ b₂ 
значит графики этих функций - пересекаются

4)  y=*x-15 и y=3x+2
k₁ ≠ k₂  и b₁ ≠ b₂ 
значит графики этих функций - пересекаются
0,0(0 оценок)
Ответ:
Ярослав4497
Ярослав4497
15.07.2020 16:07

–4

Объяснение:

Стандартный алгоритм нахождения наименьшего значения функции y=f(x) на отрезке [a; b] следующее:

1) находим критические точки функции, которые входят в заданный отрезок [a; b], то есть найдем производную функции f(x) и находим нули производной на отрезке [a; b] (решаем уравнение f '(x)=0);

2) вычислим значения функции f(x) для критических точек из отрезка [a; b] и для граничных значений a и b;

3) ответом будут наименьшее значение среди полученных значений функции.

Дана функция y = (x–9)²·(x+4)–4 и отрезок [7; 16].

1) находим критические точки функции:

y'=((x–9)²·(x+4)–4)'=((x–9)²)'·(x+4)+(x–9)²·(x+4)'–(4)'=

=2·(x–9)²⁻¹·(x+4)+(x–9)²·1–0=2·(x–9)·(x+4)+(x–9)²=

=(x–9)·(2·x+8+x–9)=(x–9)·(3·x–1)

y'=0 ⇔ (x–9)·(3·x–1)=0 ⇔ x=9 ∈ [7; 16], x=1/3 ∉ [7; 16].

2) вычислим значения функции f(x) для критической точки x=9,  граничных точек x=7 и x=16:

y(7)= (7–9)²·(7+4)–4 = 4·11–4 = 44–4 = 40

y(9)= (9–9)²·(9+4)–4 = 0·13–4 = –4

y(16)= (16–9)²·(16+4)–4 = 49·20–4 = 980–4 = 976

Среди найденных значений выбираем наименьшее, то есть:

y(9) = –4.

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота