В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
exhedzo
exhedzo
26.11.2020 22:55 •  Алгебра

Решите систему неравенств 73 (3,4)


Решите систему неравенств 73 (3,4)

Показать ответ
Ответ:
artemsuraaye
artemsuraaye
04.10.2021 16:12

6

Объяснение:

В голову приходит только тупое громоздкое решение.

Допустим в прогрессии n членов

первый член b₁

второй b₂=b₁q

предпоследний bₙ₋₁=b₁qⁿ⁻²

последний bₙ=b₁qⁿ⁻¹

Получаем систему из трех уравнений

b₁+b₁qⁿ⁻¹=66

b₁q*b₁qⁿ⁻²=128

b_1\frac{1-q^n}{1-q} =126

Решаем

b₁+b₁qⁿ⁻¹=66

b₁²qⁿ⁻¹=128

\frac{1-q^n}{1-q} =\frac{126}{b_1}

из второг уравнения получаем qⁿ⁻¹=128/b₁² и подставляем в первое

b₁+128/b₁=66

b₁²-66b₁+128=0

D=66²-4*128=(2*33)²-4*128=4(33²-128)=4*(1089-128)=4*961=2²*31²

√D=2*31

b₁=(66±2*31)/2=33±31

Два возможных значения b₁; 2 и 64

1) b₁=2

qⁿ⁻¹=128/4=32

запишем третье уравнение в виде \frac{1-q*q^{n-1}}{1-q} =\frac{126}{b_1} и подставим в него значения b₁ и qⁿ⁻¹

\frac{1-32q}{1-q} =\frac{126}{2}\\ \frac{1-32q}{1-q}=63

1-32q=63-63q

31q=62

q=2

2ⁿ⁻¹=32

2ⁿ⁻¹=2⁵

n-1=5

n=6

2) b₁=64

qⁿ⁻¹=128/64²=1/32

и подставим в третье уравнения значения b₁ и qⁿ⁻¹

\frac{1-\frac{q}{32} }{1-q} =\frac{126}{64}\\ \frac{1-\frac{q}{32}}{1-q}=\frac{63}{32}\\ 32( 1-\frac{q}{32})=63(1-q)

32-q=63-63q

62q=31

q=2

2ⁿ⁻¹=1/32

2ⁿ⁻¹=2⁻⁵

n-1=-5

n=-4 посторонний корень.

0,0(0 оценок)
Ответ:
diyoyoroo
diyoyoroo
14.06.2020 01:08

Объяснение:

a + b = 5; ab = 3

a^3*b^2 + a^2*b^3 = a^2*b^2*(a+b) = (ab)^2*(a+b) = 3^2*5 = 9*5 = 45

(a-b)^2 = a^2 + b^2 - 2ab = a^2 + 2ab + b^2 - 4ab = (a+b)^2 - 4ab = 5^2 - 4*3 = 13

a^4 + b^4

Здесь сложнее. Сначала найдем

a^2 + b^2 = a^2 + 2ab + b^2 - 2ab = (a+b)^2 - 2ab = 5^2 - 2*3 = 19

Теперь найдем

(a^2 + b^2)^2 = a^4 - 2a^2*b^2 + b^4 = a^4 + b^4 - 2(ab)^2

a^4 + b^4 = (a^2 + b^2)^2 + 2(ab)^2

Но мы знаем, что

(a^2 + b^2)^2 = 19^2 = 361.

Отсюда

a^4 + b^4 = (a^2 + b^2)^2 + 2(ab)^2 = 19^2 + 2*3^2 = 361 + 18 = 379

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота