За 12 часов совместной работы двое рабочих выполнили 12/60 = 1/5 всего задания. Второму рабочему потребовалось 80 часов на выполнение 4/5 всего задания. Тогда время на выполнение всего задания вторым рабочим: t₂ = 80:4/5 = 100 (ч) И скорость работы второго рабочего: v₂ = 1/100 = 0,01 (задания в час) За 12 часов второй рабочий сделает: S₂ = v₂t₂' = 0,01*12 = 0,12 (задания) Так как вместе оба рабочих за 12 часов выполнили 1/5 задания, то первый рабочий за это время выполнил: S₁ = S - S₂ = 1/5 - 0,12 = 0,2 - 0,12 = 0,08 (задания) Его скорость: v₁ = S₁/t₂' = 0,08:12 = 8/1200 = 1/150 (задания в час) Время на выполнение всего задания вторым рабочим: t₁ = 1/v₁ = 150 (ч)
Получим
(x - 1)*(x + 3)^2 - 5*(x + 3) = 0
Выносим общий множитель, имеем
( x + 3)*( (x - 1)*( x + 3) - 5) = 0
Аккуратно раскрываем скобки, приводим подобные
( x + 3)*( x^2 + 3x - x - 3 - 5) = 0
( x + 3 )*( x^2 + 2x - 8) = 0
Приравниваем каждое к нулю и решаем отдельно
(1)
x + 3 = 0
x₁ = - 3
(2)
x^2 + 2x - 8 = 0
Решим квадратное уравнение через дискриминант
D = b^2 + 4ac = 4 + 4*8 = 36 = 6^2 > 0
x₂ = ( - 2 + 6)/2 = 4/2 = 2;
x₃ = ( - 2 - 6)/2 = - 8/2 = - 4;
ответ :
- 4; - 3; 2
всего задания.
Второму рабочему потребовалось 80 часов на выполнение 4/5 всего задания.
Тогда время на выполнение всего задания вторым рабочим:
t₂ = 80:4/5 = 100 (ч)
И скорость работы второго рабочего:
v₂ = 1/100 = 0,01 (задания в час)
За 12 часов второй рабочий сделает:
S₂ = v₂t₂' = 0,01*12 = 0,12 (задания)
Так как вместе оба рабочих за 12 часов выполнили 1/5 задания, то первый рабочий за это время выполнил:
S₁ = S - S₂ = 1/5 - 0,12 = 0,2 - 0,12 = 0,08 (задания)
Его скорость:
v₁ = S₁/t₂' = 0,08:12 = 8/1200 = 1/150 (задания в час)
Время на выполнение всего задания вторым рабочим:
t₁ = 1/v₁ = 150 (ч)
Проверим:
t = S/(v₁+v₂) = 1/(1/150 + 1/100) = 1/(5/300) = 300/5 = 60 (ч)
ответ: первый рабочий - за 100 ч.; второй - за 150 ч.