Прогрессия арифметическая - из уравнения видно, что каждое последующее число отличается от предыдущего на 5 - это разность прогрессии.
Нам нужно найти порядковый номер последнего члена прогрессии. Для этого на время забудем про х и представим первый член, как число 3, а последний - как число 58. Тогда мы сможем найти его порядковый номер по формуле: a(n) = a(1) + (n-1)d
58 = 3 + (n-1)*5
5(n-1) = 55
n-1 = 11
n = 12
Последнее число прогрессии - 12-ое. Теперь используем формулу суммы арифметической прогрессии для нахождения х.
(a(1) + a(12))/2*12 = 456
a(1) + a(12) = 76 (здесь не забываем, что a(12) = a(1) + 11d
2*a(1) + 11d = 76
2a(1) = 21
a(1) = 10,5
То есть х*х + х + 3 = 10,5
х² + х - 7,5 = 0
Решаем уравнение и получаем корни х(1,2) = (-1 ± √31)/2
Корни, конечно, некрасивые, но это и есть ответ сложной задачи...
Сложение: 0,5+0,5=1 0,2+2,9=3,1 45,5+45,5=91 21,1=56,7=77,8 10,8+1,8=12,6 23,7+1,1=24,8 50,1+90,7=140,8 100,9+1000,9=1101,8 8,0+44,4=52,4 56,9+100,1=157 вычитание: 157-100,1=56,9 52,4-44,4=8 1101,8-1000,9=-100,9 (вычитание по аналогии со сложение из суммы вычитаешь одно слагаемое получаешь другое со знаком + или -) умножение: 1,5*1,5=2,25 0*10438467,9=0 100,6*54,6=5492,76 54,9*0,1=5,49 80*0,9=72 45,9*21,3=977,67 90,1*80,4=7244,04 11,1*11,1=123,21 8,9*1,1=9,79 90,1*43,4=3883,31 деление : (аналогично как и умножение только получившееся делишь на 1 из множителей и получаешь другой!) например: 3883,31:43,4=90,1
Прогрессия арифметическая - из уравнения видно, что каждое последующее число отличается от предыдущего на 5 - это разность прогрессии.
Нам нужно найти порядковый номер последнего члена прогрессии. Для этого на время забудем про х и представим первый член, как число 3, а последний - как число 58. Тогда мы сможем найти его порядковый номер по формуле: a(n) = a(1) + (n-1)d
58 = 3 + (n-1)*5
5(n-1) = 55
n-1 = 11
n = 12
Последнее число прогрессии - 12-ое. Теперь используем формулу суммы арифметической прогрессии для нахождения х.
(a(1) + a(12))/2*12 = 456
a(1) + a(12) = 76 (здесь не забываем, что a(12) = a(1) + 11d
2*a(1) + 11d = 76
2a(1) = 21
a(1) = 10,5
То есть х*х + х + 3 = 10,5
х² + х - 7,5 = 0
Решаем уравнение и получаем корни х(1,2) = (-1 ± √31)/2
Корни, конечно, некрасивые, но это и есть ответ сложной задачи...
Успехов!
0,5+0,5=1
0,2+2,9=3,1
45,5+45,5=91
21,1=56,7=77,8
10,8+1,8=12,6
23,7+1,1=24,8
50,1+90,7=140,8
100,9+1000,9=1101,8
8,0+44,4=52,4
56,9+100,1=157
вычитание:
157-100,1=56,9
52,4-44,4=8
1101,8-1000,9=-100,9
(вычитание по аналогии со сложение из суммы вычитаешь одно слагаемое получаешь другое со знаком + или -)
умножение:
1,5*1,5=2,25
0*10438467,9=0
100,6*54,6=5492,76
54,9*0,1=5,49
80*0,9=72
45,9*21,3=977,67
90,1*80,4=7244,04
11,1*11,1=123,21
8,9*1,1=9,79
90,1*43,4=3883,31
деление : (аналогично как и умножение только получившееся делишь на 1 из множителей и получаешь другой!) например: 3883,31:43,4=90,1