Пусть СЕ =х , тогда ВЕ= 32-х, АД= 16-х ВД= 24-(16-х) = 8+х. Треугольники ВДЕ и АВС подобны по двум углам ( угол в -общий , угол ВЕД= углу С как соответственные при параллельных ДЕ И АС и секущей ВС) Значит ВД/ ВА = ВЕ/ВС тоесть (8+х) : 24= (32-х) :4 , решаем эту пропорцию (8+х)* 32= (32-х)* 24
( 8+х)* 4= (32-х)* 3
32 +4х= 96 -3х
7х=64
х= 9 целых 1/7
ВД= 8+9 целых 1/7= 17 целых 1/7
Также пропорциональны стороны ВД : АВ= ДЕ : АС подстави данные 17 целых 1/7 : 24= ДЕ : 28, ДЕ = 17 целых 1/7 * 28 :24 = 20 см
1) D=7^2-4*3*2=49-24=25; x1=(-7-5)/6=-2; x2=(-7+5)/6=-1/3
2 рац. отриц. корня
2) D=8^2-4*3*2=64-24=40; x1=(8-√40)/6>0; x2=(8+√40)/6>0
2 иррац. полож. корня
3) D=11^2-4*4(-3)=121+48=169; x1=(11-13)/8=-1/4; x2=(11+13)/8=3
2 рац. корня разных знаков
4) D=2^2-4(-8)*3=4+96=100; x1=(2-10)/(-16)=1/2; x2=(2+10)/(-16)=-3/4
2 рац. корня разных знаков
5) D=3^2-4*5*1=9-20<0; корней нет
6) D=11^2-4(-6)(-3)=121-72=49; x1=(-11-7)/(-12)=3/2; x2=(-11+7)/(-12)=1/3
2 рац. полож. корня
7)D=4^2-4(-2)(-3)=16-24<0; корней нет
8) D=10^2-4*2(-5)=100+40=140; x1=(10-√140)/4<0; x2=(10+√140)/4>0
2 иррац. корня разных знаков
Пусть СЕ =х , тогда ВЕ= 32-х, АД= 16-х ВД= 24-(16-х) = 8+х. Треугольники ВДЕ и АВС подобны по двум углам ( угол в -общий , угол ВЕД= углу С как соответственные при параллельных ДЕ И АС и секущей ВС) Значит ВД/ ВА = ВЕ/ВС тоесть (8+х) : 24= (32-х) :4 , решаем эту пропорцию (8+х)* 32= (32-х)* 24
( 8+х)* 4= (32-х)* 3
32 +4х= 96 -3х
7х=64
х= 9 целых 1/7
ВД= 8+9 целых 1/7= 17 целых 1/7
Также пропорциональны стороны ВД : АВ= ДЕ : АС подстави данные 17 целых 1/7 : 24= ДЕ : 28, ДЕ = 17 целых 1/7 * 28 :24 = 20 см
ответ 20см