Построим график функции у = 8 + 2x - x²
Для этого преобразуем её к виду
у = -(х² - 2х + 1) + 9
у = -(х - 1)² + 9
Видим, что парабола у = -х² сдвинута по оси абсцисс на 1 вправо и на 9 вверх. То есть её вершина находится в точке с координатами (1; 9).
Найдём координаты точек пересечения параболы с осью ординат.
При х = 0 у = 8
И координаты точек пересечения параболы с осью абсцисс
у = 0
- х² + 2х + 8 = 0
D = 2² - 4 · (-1) · 8 = 36
√D = 6
х₁ = -0,5(-2 - 6) = 4
х₂ = -0,5(-2 + 6) = -2
Итак мы получили ещё две точки параболы (4; 0) и (-2; 0).
Строим параболу (веточки её опущены вниз).
Смотри прикреплённый рисунок.
1) по графику видим, что функция убывает на интервале х ∈ [1; +∞)
2) множество решений неравенства 8 + 2x - x^2 ≤ 0 есть объединение двух интервалов х∈ (-∞; -2] ∪ [4; +∞)
Вот накалякал. Разбирайся :)
xy/(x+y) = 5xz/(x+z) = 7yz/(y+z) = 9
xy = 5x + 5yxz = 7x + 7zyz = 9y + 9z
x(y-5) = 5yx = 5y/(y-5)
5yz/(y-5) = 35y/(y-5) + 7z5yz = 35y + 7z * (y-5)5yz = 35y + 7yz - 35z2yz + 35y = 35zy(2z + 35) = 35zy = 35z/(2z + 35) = z/(2z/35 + 1)
35z^2/(2z + 35) = 315z/(2z + 35) + 9z35z^2 = 315z + 9z*(2z + 35)35z^2 = 315z + 18z^2 + 315z17z^2 = 630zz=630/17
y = 35*630/(2*630/17 + 35)/17 = 35*630/(1260 + 595) = 22050/1855 = 630 / 53
x = 5*630/(630/53 - 5)/53 = 5*630/((630/53 - 5)*53) = 5*630/365 = 630/73
Построим график функции у = 8 + 2x - x²
Для этого преобразуем её к виду
у = -(х² - 2х + 1) + 9
у = -(х - 1)² + 9
Видим, что парабола у = -х² сдвинута по оси абсцисс на 1 вправо и на 9 вверх. То есть её вершина находится в точке с координатами (1; 9).
Найдём координаты точек пересечения параболы с осью ординат.
При х = 0 у = 8
И координаты точек пересечения параболы с осью абсцисс
у = 0
- х² + 2х + 8 = 0
D = 2² - 4 · (-1) · 8 = 36
√D = 6
х₁ = -0,5(-2 - 6) = 4
х₂ = -0,5(-2 + 6) = -2
Итак мы получили ещё две точки параболы (4; 0) и (-2; 0).
Строим параболу (веточки её опущены вниз).
Смотри прикреплённый рисунок.
1) по графику видим, что функция убывает на интервале х ∈ [1; +∞)
2) множество решений неравенства 8 + 2x - x^2 ≤ 0 есть объединение двух интервалов х∈ (-∞; -2] ∪ [4; +∞)
Вот накалякал. Разбирайся :)
xy/(x+y) = 5
xz/(x+z) = 7
yz/(y+z) = 9
xy = 5x + 5y
xz = 7x + 7z
yz = 9y + 9z
x(y-5) = 5y
x = 5y/(y-5)
5yz/(y-5) = 35y/(y-5) + 7z
5yz = 35y + 7z * (y-5)
5yz = 35y + 7yz - 35z
2yz + 35y = 35z
y(2z + 35) = 35z
y = 35z/(2z + 35) = z/(2z/35 + 1)
35z^2/(2z + 35) = 315z/(2z + 35) + 9z
35z^2 = 315z + 9z*(2z + 35)
35z^2 = 315z + 18z^2 + 315z
17z^2 = 630z
z=630/17
y = 35*630/(2*630/17 + 35)/17 = 35*630/(1260 + 595) = 22050/1855 = 630 / 53
x = 5*630/(630/53 - 5)/53 = 5*630/((630/53 - 5)*53) = 5*630/365 = 630/73