Доброта - это бескорыстная забота и внимание о ком-то. В рассказе "Юшка" автор показывает поистине добрым человеком самого героя, который прощал всем оскорбления и побои, а самое главное бедной сироте. Юшка сам себе во многом отказывал, довольствовался малым, трудился, чтоб девочке, дать ей образование. "Там девушка припала к земле, в которой лежал мертвый Юшка, человек, кормивший ее с детства, никогда не евший сахара, чтоб она ела его." Все его старания были не напрасны, потому что девочка стала доброй и милосердной девушкой-врачом. Люди, бившие его, грубившие ему, надсмехающиеся над ним при его жизни, теперь зауважали его после смерти и стал он -Ефим Дмитриевич. Девушка-врач как и Юшка стала лечить людей их за жестокость в отношении ее благодетеля. Юшка помимо образования смог передать сироте нечто большее- это желание бескорыстно людям, творить добро. Значит доброта - это любовь к своим ближним.
Здесь переменной величиной X является средняя месячная зарплата. Как видно из приведенных данных, наименьшее значение величины Х равно 130, а наибольшее — 370. Таким образом, диапазон наблюдений представляет собой интервал 130 – 370, длина которого равна 370 – 130 = 240.
Разобьем диапазон наблюдений на части (разряды) Так, чтобы каждый разряд содержал несколько экспериментальных данных. Например, разделим интервал 130 – 370 на 6 равных частей, тогда длина каждого разряда будет 40. Границами разрядов будут числа 130, 170, 210, 250, 290, 330, 370 (рис. 3).
Подсчитаем число значений, попавших в каждый разряд. Например, в первый разряд попадают следующие числа: 150 (1 раз), 160 (2 раза), 130 (1 раз), 170 (1 раз). Поскольку число 170 находится на границе между первым и вторым разрядами, мы включим его и в первый и во второй разряды, но с кратностью 1/2. Сложив кратности, мы получим Абсолютную частоту первого разряда:
M1 = 1 + 2 + 1 + 0,5 = 4,5.
Разделив абсолютную частоту на число П всех наблюдений, получим Относительную частоту Попадания величины Х в первый разряд:
Проделав вычисления для всех разрядов, мы получим следующую таблицу.
Таблица 6
Здесь Mi — абсолютные частоты, — относительные частоты. Табл. 6 называется Интервальным рядом.
Сумма всех абсолютных частот равна числу всех приведенных в табл. 6 значений переменной величины:
4,5 + 5 + 12 + 14,5 + 9 + 5 = 50.
Это свойство используется для проверки правильности вычислений. Из него следует, что сумма всех относительных частот равна единице:
0,09 + 0,10 + 0,24 + 0,29 + 0,18 + 0,10 = 1.
Интервальный ряд изображают графически в виде Гистограммы, которая строится так. Сначала вычисляют плотности частот H1, H2, H3, ... , разделив относительную частоту каждого разряда на его длину:
Затем выбирают на плоскости систему координат и откладывают на оси Х значения 40, 80, 120, ... , соответствующие границам разрядов. На каждом из отрезков длины 40, как на основании, строят прямоугольник, высота которого равна плотности частоты соответствую щего разряда. Полученная фигура и называется Гистограммой. Она изображена на рис. 4.
Заметьте, что высоты H1, H2, ... , H6 прямоугольников, образующих гистограмму, выбраны так, что их площади будут , т. е. равны соответствующим относительным частотам. Отсюда вытекает такое правило:
Для того, чтобы найти долю тех значений величины. X, которые попадают в некоторый интервал, нужно найти площадь той части гистограммы, основанием которой является данный интервал.
Определим, например, долю значений величины X, Принадлежащих интервалу 210 – 300. Для этого вычислим площадь фигуры с основанием 210 – 300 (на рисунке она выделена штриховкой). Площади первых двух прямоугольников, составляющих фигуру, равны соответственно = 0,24 и = 0,29; площадь третьего равна 10 • 0,0045 = 0,045. Сумма площадей 0,24 + 0,29 + 0,045 = 0,575 и дает нужное число. Иными словами, 57,5% значений величины Х находится в границах от 210 до 300.
Как мы заметили в начале параграфа, интервальный ряд составляют при обработке больших массивов информации. В таких случаях, как правило, отдельные значения величины Х не фиксируются, а подсчитывается количество ее значений, попавших в каждый разряд (т. е. абсолютные частоты). Поэтому исследователь не знает отдельных значений наблюдаемой величины Х и не может воспользоваться формулами (1), (5) и (7) для вычисления среднего арифметического, дисперсии и среднего квадратического отклонения. Но приближенное значение этих числовых характеристик можно найти с интервального ряда. Для этого сначала находят середины разрядов: (здесь K — Число всех разрядов интервального ряда); затем проводят вычисления по следующим формулам: это то что я знаю
Доброта - это бескорыстная забота и внимание о ком-то. В рассказе "Юшка" автор показывает поистине добрым человеком самого героя, который прощал всем оскорбления и побои, а самое главное бедной сироте. Юшка сам себе во многом отказывал, довольствовался малым, трудился, чтоб девочке, дать ей образование. "Там девушка припала к земле, в которой лежал мертвый Юшка, человек, кормивший ее с детства, никогда не евший сахара, чтоб она ела его." Все его старания были не напрасны, потому что девочка стала доброй и милосердной девушкой-врачом. Люди, бившие его, грубившие ему, надсмехающиеся над ним при его жизни, теперь зауважали его после смерти и стал он -Ефим Дмитриевич. Девушка-врач как и Юшка стала лечить людей их за жестокость в отношении ее благодетеля. Юшка помимо образования смог передать сироте нечто большее- это желание бескорыстно людям, творить добро. Значит доброта - это любовь к своим ближним.
Объяснение:
ри обработке большого числа экспериментальных данных их предварительно группируют и оформляют в виде так называемого Интервального ряда.
Пример 1. Средняя месячная зарплата за год каждого из пятидесяти случайно отобранных работников хозяйства такова:
317 304 230 285 290 320 262 274 205 180 234 221 241 270 257 290 258 296 301 150 160 210 235 308 240 370 180 244 365 130 170 250 370 267 288 231 253 315 201 256 279 285 226 367 247 252 320 160 215 350.
Здесь переменной величиной X является средняя месячная зарплата. Как видно из приведенных данных, наименьшее значение величины Х равно 130, а наибольшее — 370. Таким образом, диапазон наблюдений представляет собой интервал 130 – 370, длина которого равна 370 – 130 = 240.
Разобьем диапазон наблюдений на части (разряды) Так, чтобы каждый разряд содержал несколько экспериментальных данных. Например, разделим интервал 130 – 370 на 6 равных частей, тогда длина каждого разряда будет 40. Границами разрядов будут числа 130, 170, 210, 250, 290, 330, 370 (рис. 3).
Подсчитаем число значений, попавших в каждый разряд. Например, в первый разряд попадают следующие числа: 150 (1 раз), 160 (2 раза), 130 (1 раз), 170 (1 раз). Поскольку число 170 находится на границе между первым и вторым разрядами, мы включим его и в первый и во второй разряды, но с кратностью 1/2. Сложив кратности, мы получим Абсолютную частоту первого разряда:
M1 = 1 + 2 + 1 + 0,5 = 4,5.
Разделив абсолютную частоту на число П всех наблюдений, получим Относительную частоту Попадания величины Х в первый разряд:
Проделав вычисления для всех разрядов, мы получим следующую таблицу.
Таблица 6
Здесь Mi — абсолютные частоты, — относительные частоты. Табл. 6 называется Интервальным рядом.
Сумма всех абсолютных частот равна числу всех приведенных в табл. 6 значений переменной величины:
4,5 + 5 + 12 + 14,5 + 9 + 5 = 50.
Это свойство используется для проверки правильности вычислений. Из него следует, что сумма всех относительных частот равна единице:
0,09 + 0,10 + 0,24 + 0,29 + 0,18 + 0,10 = 1.
Интервальный ряд изображают графически в виде Гистограммы, которая строится так. Сначала вычисляют плотности частот H1, H2, H3, ... , разделив относительную частоту каждого разряда на его длину:
Затем выбирают на плоскости систему координат и откладывают на оси Х значения 40, 80, 120, ... , соответствующие границам разрядов. На каждом из отрезков длины 40, как на основании, строят прямоугольник, высота которого равна плотности частоты соответствую щего разряда. Полученная фигура и называется Гистограммой. Она изображена на рис. 4.
Заметьте, что высоты H1, H2, ... , H6 прямоугольников, образующих гистограмму, выбраны так, что их площади будут , т. е. равны соответствующим относительным частотам. Отсюда вытекает такое правило:
Для того, чтобы найти долю тех значений величины. X, которые попадают в некоторый интервал, нужно найти площадь той части гистограммы, основанием которой является данный интервал.
Определим, например, долю значений величины X, Принадлежащих интервалу 210 – 300. Для этого вычислим площадь фигуры с основанием 210 – 300 (на рисунке она выделена штриховкой). Площади первых двух прямоугольников, составляющих фигуру, равны соответственно = 0,24 и = 0,29; площадь третьего равна 10 • 0,0045 = 0,045. Сумма площадей 0,24 + 0,29 + 0,045 = 0,575 и дает нужное число. Иными словами, 57,5% значений величины Х находится в границах от 210 до 300.
Как мы заметили в начале параграфа, интервальный ряд составляют при обработке больших массивов информации. В таких случаях, как правило, отдельные значения величины Х не фиксируются, а подсчитывается количество ее значений, попавших в каждый разряд (т. е. абсолютные частоты). Поэтому исследователь не знает отдельных значений наблюдаемой величины Х и не может воспользоваться формулами (1), (5) и (7) для вычисления среднего арифметического, дисперсии и среднего квадратического отклонения. Но приближенное значение этих числовых характеристик можно найти с интервального ряда. Для этого сначала находят середины разрядов: (здесь K — Число всех разрядов интервального ряда); затем проводят вычисления по следующим формулам: это то что я знаю