Тут писать дофига, но делается всё одинаково. Ты раскрываешь правую скобку по формуле квадрата суммы/разности и переносишь в левую часть. У тебя получается нормальное квадратное уравнение, в котором ты ищешь дискриминант и получаешь корни. Твои корни - это те значения, в которых твоё неравенство равно нулю. У тебя в каждом случае коэффициент при X^2 будет положительным, то-есть ветки параболы направлены вверх. Тебе нужен будет промежуток от минус бесконечности до меньшего корня (включительно или не включительно зависит от знака неравенства) и от большего корня (включительно или не включительно зависит от знака неравенства) до плюс бесконечности если тебе нужно больше нуля и от меньшего до большего корня (включительно или не включительно зависит от знака неравенства) если тебе нужно меньше нуля. Этого хватит? Как делается понятно или привести пример в комментариях под решением?
ответ: S=1010.
Объяснение:
Представим данное вы ражение, как сумму двух арифметических прогрессий: (2020+2018+2016+...+2)+(-2019+(-2017)+(-2015)+...+(-1)).
1.
2020+2018+2016+...+2.
Sn=(a₁+an)*n/2
a₁=2020
d=a₂-a₁=2018-2020
d=-2.
an=a₁+(n-1)*d
2020+(n-1)*(-2)=2
2020-2n+2=2
2n=2020 |÷2
n=1010
S₁₀₁₀=(2020+2)*1010/2=2022*505.
2.
-2019+(-2017)+(-2015)+...+(-1)
a₁=-2019
d=-2017-(-2019)=-2017+2019=2
an=-2019+(n-1)*2=-1
-2019+2n-2=-1
2n=2020 |÷2
n=1010
S'₁₀₁₀=(-2019+(-1))*1010/2=-2020*505.
S=S₁₀₁₀+S'₁₀₁₀=2022*505+(-2020)*505=505*(2022-2020)=505*2=1010.
Ниже
Объяснение:
Тут писать дофига, но делается всё одинаково. Ты раскрываешь правую скобку по формуле квадрата суммы/разности и переносишь в левую часть. У тебя получается нормальное квадратное уравнение, в котором ты ищешь дискриминант и получаешь корни. Твои корни - это те значения, в которых твоё неравенство равно нулю. У тебя в каждом случае коэффициент при X^2 будет положительным, то-есть ветки параболы направлены вверх. Тебе нужен будет промежуток от минус бесконечности до меньшего корня (включительно или не включительно зависит от знака неравенства) и от большего корня (включительно или не включительно зависит от знака неравенства) до плюс бесконечности если тебе нужно больше нуля и от меньшего до большего корня (включительно или не включительно зависит от знака неравенства) если тебе нужно меньше нуля. Этого хватит? Как делается понятно или привести пример в комментариях под решением?