Первое слагаемое разложим как разность квадратов, а второе - разложим на множители: (х-7)²(x+7)² x²+4x-21 = 0 Квадратное уравнение, решаем относительно x: Ищем дискриминант:D=4^2-4*1*(-21)=16-4*(-21)=16-(-4*21)=16-(-84)=16+84=100; Дискриминант больше 0, уравнение имеет 2 корня: x₁=(√100-4)/(2*1)=(10-4)/2=6/2=3; x₂=(-√100-4)/(2*1)=(-10-4)/2=-14/2=-7. Поэтому многочлен х²+4х-21=(х-3)(х+7). Исходное уравнение примет вид: (х-7)²(x+7)²+(х-3)²(х+7)². Выносим (х+7)² за скобки: (х+7)²((х-7)²+(х-3)²)=0. Произведение равно нулю, когда один или все множители равны 0. (х+7)²=0 х+7 = 0 х = -7. Второй множитель не может быть равен 0. ответ: х = -7..
Заметим, что если a и b дают такие же остатки при делении на n, что и x, y, то ab даёт такой же остаток при делении на n, что и xy. (Доказательство: a = np + x, b = nq + y для некоторых целых p, q. Тогда ab = (np + x)(nq + y) = n(npq + qx + py) + xy. Первое слагаемое делится на n, значит, ab даёт такой же остаток, что и xy). Из этого следует, что если у a и x одинаковые остатки, то и у любых их натуральных степеней a^m, x^m будут одинаковые остатки. Дальше для сокращения записей будет использоваться такое обозначение: "если a ≡ x(mod n), то a^k ≡ x^k (mod n).
(х-7)²(x+7)²
x²+4x-21 = 0
Квадратное уравнение, решаем относительно x:
Ищем дискриминант:D=4^2-4*1*(-21)=16-4*(-21)=16-(-4*21)=16-(-84)=16+84=100;
Дискриминант больше 0, уравнение имеет 2 корня:
x₁=(√100-4)/(2*1)=(10-4)/2=6/2=3;
x₂=(-√100-4)/(2*1)=(-10-4)/2=-14/2=-7.
Поэтому многочлен х²+4х-21=(х-3)(х+7).
Исходное уравнение примет вид:
(х-7)²(x+7)²+(х-3)²(х+7)².
Выносим (х+7)² за скобки:
(х+7)²((х-7)²+(х-3)²)=0.
Произведение равно нулю, когда один или все множители равны 0.
(х+7)²=0
х+7 = 0
х = -7.
Второй множитель не может быть равен 0.
ответ: х = -7..
(Доказательство: a = np + x, b = nq + y для некоторых целых p, q. Тогда ab = (np + x)(nq + y) = n(npq + qx + py) + xy. Первое слагаемое делится на n, значит, ab даёт такой же остаток, что и xy).
Из этого следует, что если у a и x одинаковые остатки, то и у любых их натуральных степеней a^m, x^m будут одинаковые остатки. Дальше для сокращения записей будет использоваться такое обозначение: "если a ≡ x(mod n), то a^k ≡ x^k (mod n).
1) 27^n + 12 ≡ 1^n + 12 ≡ 13 ≡ 0 (mod 13)
2) 17^n + 15 ≡ 1^n + 15 ≡ 16 ≡ 0 (mod 16)
3) 8^n + 15^n - 2 ≡1^n + 1^n - 2 ≡ 0 (mod 7)
4) 3 * 9^n + 7 * 7^(2n) = 3 * 9^n + 7 * 49^n ≡ 3 * (-1)^n + 7 * (-1)^n = (-1)^n * 10 ≡ 0 (mod 10)