С2+6с-40=0 Выделим в левой части полный квадрат. Для этого запишем выражение с2+6с в следующем виде: с2+6с=с2+2*3*с. В полученном выражении первое слагаемое - квадрат числа с, а второе - удвоенное произведение с на 3. По этому чтобы получить полный квадрат, нужно прибавить 3в квадрате, так как
с2 + 2• с • 3 + 3в квадрате = (с + 3)в квадрате. Преобразуем теперь левую часть уравнения с2 + 6х - 40 = 0,прибавляя к ней и вычитая 3 в квадрате. Имеем: с2 + 6с - 40 = с2 + 2• с • 3 + 3в квадрате - 3в квадрате - 40 = (с + 3)в квадрате - 9 - 40 = (с + 3)в квадрате - 49=0 Таким образом, данное уравнение можно записать так: (с + 3)в квадрате - 49 =0, (х + 3)в квадрате = 49. Следовательно, х + 3 - 7 = 0, х1 = -4, или х + 3 = -7, х2 = -10
Выделим в левой части полный квадрат.
Для этого запишем выражение с2+6с в следующем виде:
с2+6с=с2+2*3*с.
В полученном выражении первое слагаемое - квадрат числа с, а второе - удвоенное произведение с на 3. По этому чтобы получить полный квадрат, нужно прибавить 3в квадрате, так как
с2 + 2• с • 3 + 3в квадрате = (с + 3)в квадрате.
Преобразуем теперь левую часть уравнения
с2 + 6х - 40 = 0,прибавляя к ней и вычитая 3 в квадрате. Имеем:
с2 + 6с - 40 = с2 + 2• с • 3 + 3в квадрате - 3в квадрате - 40 = (с + 3)в квадрате - 9 - 40 = (с + 3)в квадрате - 49=0
Таким образом, данное уравнение можно записать так:
(с + 3)в квадрате - 49 =0,
(х + 3)в квадрате = 49.
Следовательно, х + 3 - 7 = 0, х1 = -4, или х + 3 = -7, х2 = -10
Объяснение: Щоб знайти найбільше і найменше значення функції на відрізку, треба
а) знайти максимуми і мінімуми функції на цьому відрізку. Для цього беруть похідну і прирівнюють її до 0. Рішення і є критичними точками.
б) знайти значення функції на кінцях відрізку.
в) вибрати найбільше і найменше значення функції.
3. а) g'(x)=(-x²+6x-1)'= -2x+6
g'(x)=0, -2x+6=0, -2x=-6, x=3
g(3)= -3²+6·3-1=-9+18-1=8, g(3)=8
б) [2;4]
g(2)=-2²+6·2-1=-4+12-1=7, g(2)=7
g(4)=-4²+6·4-1=-16+24-1=7, g(4)=7
в) Найбільше значення функції g(3)=8
Найменше значення функції g(2)=7 і g(4Объяснение: Щоб знайти найбільше і найменше значення функції на відрізку, треба
а) знайти максимуми і мінімуми функції на цьому відрізку. Для цього беруть похідну і прирівнюють її до 0. Рішення і є критичними точками.
б) знайти значення функції на кінцях відрізку.
в) вибрати найбільше і найменше значення функції.
3. а) g'(x)=(-x²+6x-1)'= -2x+6
g'(x)=0, -2x+6=0, -2x=-6, x=3
g(3)= -3²+6·3-1=-9+18-1=8, g(3)=8
б) [2;4]
g(2)=-2²+6·2-1=-4+12-1=7, g(2)=7
g(4)=-4²+6·4-1=-16+24-1=7, g(4)=7
в) Найбільше значення функції g(3)=8
Найменше значення функції g(2)=7 і g(4)=7