В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
pavlushkaaa
pavlushkaaa
19.03.2021 04:38 •  Алгебра

Решите систему уравнений, используя метод подстановки:


Решите систему уравнений, используя метод подстановки:​

Показать ответ
Ответ:
yuras12d
yuras12d
20.06.2022 06:57

Гра́фик фу́нкции — геометрическое понятие в математике, дающее представление о геометрическом образе функции.

Наиболее наглядны графики вещественнозначных функций вещественного переменного одной переменной.

Для непрерывной функции двух переменных {\displaystyle z=f(x,\ y)}{\displaystyle z=f(x,\ y)} их графики представляют собой поверхности в трёхмерном пространстве, являющиеся геометрическим местом точек {\displaystyle z,\ x,\ y.}{\displaystyle z,\ x,\ y.} Эти поверхности могут быть изображены на плоскости в какой-либо изометрической проекции (см. рисунок).

Обычно графики строят в прямоугольной системе координат, на плоскости эту систему координат называют декартовой системой координат. Также графики для повышения наглядности часто строят в других системах координат, например, в полярной системе координат или других косоугольных системах координат.

В случае использования прямоугольной системы координат, график функции — это геометрическое место точек плоскости, абсциссы (x) и ординаты (y), которые связаны отображаемой функцией:

точка {\displaystyle (x,y)}(x,y) располагается (или находится) на графике функции {\displaystyle y=f(x)}y=f(x) тогда и только тогда, когда {\displaystyle y=f(x)}y=f(x).

Таким образом, функция может быть адекватно описана своим графиком.

Из определения графика функции следует, что далеко не всякое множество точек плоскости может быть графиком некоторой функции, например, из требования однозначности функции вытекает, что никакая прямая, параллельная оси ординат не может пересекать график функции более чем в одной точке. Если функция обратима, то график обратной функции (как подмножество плоскости) будет совпадать с графиком самой функции (это, попросту, одно и то же подмножество плоскости).

0,0(0 оценок)
Ответ:
111120068
111120068
23.07.2020 03:50
                       S             V                     t
по теч .        40км      х + 5км/ч         40/(х +5) ч
пр. теч.       30 км      х - 5 км/ч       30/(х -5) ч
V собств. = х км/ч
Vтеч. = 5 км/ч
Составим уравнение:
40/(х + 5) +  30/(х -5) = 5 | * (x +5)(x - 5)≠ 0
                                               x≠ -5,   x≠ 5
40(x - 5) +30(x+5) = 5(x² -25)
40x -200 +30x +150 = 5x² -125,
5x²  -70x -75 = 0
x² - 14x -  15 = 0
По т. Виета: х1 = -1 ( не подходит по условию задачи)
                      х2 = 15 (км/ч) - V собств.
ответ: Vсоств. = 15 км/ч 
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота