Для того, чтобы найти функцию, обратную данной. надо х и у поменять местами, и вновь выразить у через х: y = (2x-1) / (x+3) x = (2y-1) / (y+3) - выражаем теперь у через х: x(y+3) = 2y - 1 y(2-x) = 3x+1 y = (3x+1) / (2-x) - обратная функция. Теперь необходимо ее построить. 1) Найти точки экстремума и (или) точки перегиба: y' = [3*(2-x) + (3x+1) ] / (2-x)^2 = [6-3x+3x+1] / (2-x)^2 = 7/(2-x)^2 - производная всегда положительная, значит функция у возрастает на всей области определения. 2) ОДЗ: 2-x # 0, x # 2. Значит прямая х=2 - ассимптота функции у. 3) Нули функции: y=0, 3x+1=0, x=-1/3. Точка (-1/3; 0). 4) Пересечение с осью Оу: х=0, у=1/2. Точка (0; 1/2)
Давайте решение уравнения -9(8 - 9x) = 4x + 5 начнем с того, что откроем скобки.
Для этого применим дистрибутивный закон умножения:
-9 * 8 - 9 * (-9x) = 4x + 5;
-72 + 81x = 4x + 5;
Далее мы собираем в разных частях уравнения слагаемые с переменными и без.
81x - 4x = 5 + 72;
Приводим подобные в обеих частях полученного равенства:
x(81 - 4) = 77;
77x = 77;
Ищем неизвестный множитель:
x = 77 : 77;
x = 1.
Проверим верно ли мы нашли корень:
-9(8 - 9 * 1) = 4 * 1 + 5;
-9 * (-1) = 4 + 5;
9 = 9.
ответ: x = 1.
Объяснение:
y = (2x-1) / (x+3)
x = (2y-1) / (y+3) - выражаем теперь у через х:
x(y+3) = 2y - 1
y(2-x) = 3x+1
y = (3x+1) / (2-x) - обратная функция.
Теперь необходимо ее построить.
1) Найти точки экстремума и (или) точки перегиба:
y' = [3*(2-x) + (3x+1) ] / (2-x)^2 = [6-3x+3x+1] / (2-x)^2 = 7/(2-x)^2 - производная всегда положительная, значит функция у возрастает на всей области определения.
2) ОДЗ: 2-x # 0, x # 2. Значит прямая х=2 - ассимптота функции у.
3) Нули функции: y=0, 3x+1=0, x=-1/3. Точка (-1/3; 0).
4) Пересечение с осью Оу: х=0, у=1/2. Точка (0; 1/2)