2.Найдите наибольшее значение функции y=-x^2-6x+5 на промежутке [-4,-2]
y=-x^2-6x+5 y`=-2x-6 y`=0 при х=-3 - принадлежит [-4,-2] у(-4)=-(-4)^2-6*(-4)+5=13 у(-3)=-(-3)^2-6*(-3)+5=14 у(-2)=-(-2)^2-6*(-2)+5=13
наибольшее значение функции на промежутке [-4,-2] max(y)=14
3. y=корень(3) - горизонтальная прямая касательная к прямой в любой точке совпадает с прямой к оси абсцисс под углом 30 градусов касательная к прямой у=корень(3) быть не может
4. y=(x-1)^3-3(x-1) =(x-1)((x-1)^2-3)=(x-1-корень(3))*(x-1)*(x-1+корень(3)) кривая третей степени, симметричная относительно точки x=1; у=0 имеет локальный минимум и локальный максимум имеет три нуля функции имеет одну точку перегиба расчетов не привожу так как это уже 4 задание в вопросе
график во вложении
3*. - для измененнного условия y=корень(3x) y`=1/2*корень(3/x) y`=tg(pi/6)=корень(3)/3=1/2*корень(3/x)
s(t)=t^3+3t^2
v(t)=3t^2+6t
v(1)=3+6=9 м/с
a(t)=6t+6
a(1)=6+6=12 м/с2
2.Найдите наибольшее значение функции y=-x^2-6x+5 на промежутке [-4,-2]
y=-x^2-6x+5
y`=-2x-6
y`=0 при х=-3 - принадлежит [-4,-2]
у(-4)=-(-4)^2-6*(-4)+5=13
у(-3)=-(-3)^2-6*(-3)+5=14
у(-2)=-(-2)^2-6*(-2)+5=13
наибольшее значение функции на промежутке [-4,-2]
max(y)=14
3.
y=корень(3) - горизонтальная прямая
касательная к прямой в любой точке совпадает с прямой
к оси абсцисс под углом 30 градусов касательная к прямой у=корень(3) быть не может
4.
y=(x-1)^3-3(x-1) =(x-1)((x-1)^2-3)=(x-1-корень(3))*(x-1)*(x-1+корень(3))
кривая третей степени,
симметричная относительно точки x=1; у=0
имеет локальный минимум и локальный максимум
имеет три нуля функции
имеет одну точку перегиба
расчетов не привожу так как это уже 4 задание в вопросе
график во вложении
3*. - для измененнного условия
y=корень(3x)
y`=1/2*корень(3/x)
y`=tg(pi/6)=корень(3)/3=1/2*корень(3/x)
корень(х)=3/2
х=2,25 - это ответ
а) 1/х + 5х/(х+1) = 5
где х ≠ 0 и (х + 1) ≠ 0 ⇒ х ≠ (-1)
1 · (х + 1) + 5х · х = 5 · х · (х + 1)
х + 1 + 5х² = 5х² + 5х
5х² - 5х² + х - 5х = -1
-4х = -1
х = -1 : (-4)
х = 1/4 или 0,25 (в десятичных дробях)
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
б) (3х²-48)/(х+4) = 0
где (х+4) ≠ 0 ⇒ х ≠ (-4)
3х² - 48 = 0 · (х + 4)
3х² - 48 = 0
3х² = 48
х² = 48 : 3
х² = 16
х = √16
х₁ = 4
х₂ = (-4) - не подходит, так как знаменатель не может равняться 0
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
в) 10/(х-3) - 8/х = 1
где (х - 3) ≠ 0 ⇒ х ≠ 3 и х ≠ 0
10 · х - 8 · (х - 3) = 1 · х · (х - 3)
10х - 8х + 24 = х² - 3х
х² - 3х - 10х + 8х - 24 = 0
х² - 5х - 24 = 0
D = b² - 4ac = (-5)² - 4 · 1 · (-24) = 25 + 96 = 121
√D = √121 = 11
х = (-b±√D)/(2a)
х₁ = (5-11)/(2·1) = (-6)/2 = -3
х² = (5+11)/(2·1) = 16/2 = 8
ответ: (-3; 8).