Последовательность задана формулой c_n=n плюс дробь, числитель — ( минус 1) в степени n , знаменатель — n . Какое из следующих чисел не является членом этой последовательности?
Такие неравенства решаем как обычные уравнения, только вместо равно здесь < > и тд.
Но есть один нюанс : *в строчке, которую я пометила звездочкой на фото*
Там, чтобы найти x , нужно правую часть неравенства поделить на левую ( то есть -5 поделить на -3 ) . Но , если в левой части минус , то знак уравнения меняется на противоположный ( > на < и наоборот).
Минус у правой части неравенства не имеет значения. Если мы делим НА МИНУС, то знак всегда меняется. ... ... В итоге вышло, что икс больше единицы с хвостиком. То есть Единица уже не подходит. И целые решения неравенства это : 2, 3, 4, 5, 6 и так далее. Среди вариантов ответов нам подходит 2) 2 .
Последовательность задана формулой c_n=n плюс дробь, числитель — ( минус 1) в степени n , знаменатель — n . Какое из следующих чисел не является членом этой последовательности?
1) 2 дробь, числитель — 1, знаменатель — 2 2) 4 дробь, числитель — 1, знаменатель — 4 3) 5 дробь, числитель — 1, знаменатель — 5 4) 6 дробь, числитель — 1, знаменатель — 6
Аналоги к заданию № 137295: 169365 169367 169369 169371 169373 169375 169377 169379 169381 169383 Все
Раздел кодификатора ФИПИ: 4.5 Элементарные задачи на числовые последовательности.
Решение · Поделиться · Курс · Сообщить об ошибке
3
Задания Д12 № 137296 Добавить в вариант
Но есть один нюанс :
*в строчке, которую я пометила звездочкой на фото*
Там, чтобы найти x , нужно правую часть неравенства поделить на левую ( то есть -5 поделить на -3 ) . Но , если в левой части минус , то знак уравнения меняется на противоположный ( > на < и наоборот).
Минус у правой части неравенства не имеет значения. Если мы делим НА МИНУС, то знак всегда меняется.
...
...
В итоге вышло, что икс больше единицы с хвостиком. То есть Единица уже не подходит. И целые решения неравенства это : 2, 3, 4, 5, 6 и так далее. Среди вариантов ответов нам подходит 2) 2 .